当前位置: 首页 > news >正文

【Java】汉诺塔

 汉诺塔

汉诺塔(Tower of Hanoi)(河内塔):把圆盘从下面开始按大小顺序重新摆放到另一根柱子上,并且小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘


  汉诺塔规则

  •  disk表示圆盘数
  • 一次只能移动一个圆盘
  • 小圆盘只能在大圆盘的上方
  • A 、B 、C分别表示圆柱
  • A为起始圆柱、B为中转圆柱、C为终止圆柱

disk = 1 时:

移动次数为:2^1 - 1

只需要将绿色圆盘 A->C 直接移过去;

A->C


disk = 2 时:

移动次数为:2^2 - 1,一次只能移动一个圆盘

  1. 黄色圆盘 A->B
  2. 绿色圆盘 A->C
  3. 黄色圆盘B->C

A->B  A->C  B->C


disk = 3 时:

移动次数为:2^3 - 1,一次只能移动一个圆盘

  1. 粉色圆盘A->C
  2. 黄色圆盘A->B
  3. 粉色圆盘C->B
  4. 绿色圆盘A->C
  5. 粉色圆盘B->A
  6. 黄色圆盘B->C
  7. 粉色圆盘A->C

A->C  A->B  C->B  A->C  B->A  B->C  A->C


递归分析

  1. 先看desk = 3 个圆盘时,我们是先将圆柱A上面的2个圆盘(3 - 1),借助圆柱C最终移动到圆柱B上;
  2. 此时圆柱A上就只剩1个圆盘,就可以直接将圆盘从圆柱A移动到圆柱C;


  1. desk = 2个圆盘,先将圆柱B上面的那1个圆盘(2 - 1),最终直接从圆柱B移动到圆柱A上;
  2. 此时圆柱B上就只剩1个圆盘,就可以直接从圆柱B移动到圆柱C上;


  1. 只剩最后1个圆盘了,则是直接从圆柱A上移动到圆柱C上;


 disk = n 时:

移动次数为:2^n - 1,一次只能移动一个圆盘

错误递归分析

  1.  当desk = n个圆盘时,需要将圆柱A上面的n-1个圆盘,借助圆柱C最终移动到圆柱B上;
  2. 此时圆柱A上就只剩1个圆盘,则直接从圆柱A移动到圆柱C;

  1.  desk = n 时,先将圆柱B上面的n-1个圆盘,借助圆柱C最终移到圆柱A上;
  2. 此时圆柱A上有n-1个圆盘,递归以上步骤;


  1. 当 desk = n-1时,需要将圆柱A上面的(n-1) - 1个圆盘,借助圆柱C移到圆柱B上(这里已经在开始和desk = n 的情况一样);
  2. 此时圆柱A上就只剩1个圆盘,则直接从圆柱A移动到圆柱C;

  1. desk = n-1时,先将圆柱B上面的(n-1) - 1个圆盘,借助圆柱C最终移到圆柱A上;
  2. 此时圆柱A上有(n-1) - 1个圆盘,递归以上步骤;


错误代码分析

public class TowerOfHanoi {public static void hanoi(int n, char posA, char posB, char posC) {// hanoi(圆盘个数,参数1,参数2,参数3)// 参数1表示起始位置、参数2表示中转位置、参数3表示终止位置if(n == 1) {move(posA, posC);return; // 递归一定要return}// 这一步就是将 圆柱A 上的 n-1个 圆盘// 借助圆柱C 移动到 圆柱B上hanoi(n-1, posA, posC, posB);// 将圆柱A上剩下的一个移到圆柱C上move(posA, posC);// 将 圆柱B 上的所有圆盘 借助圆柱C 移到圆柱A上hanoi(n-1, posB, posC, posA); // 这里是错的}public static void move(char pos1, char pos2) {System.out.println(pos1 + "->" + pos2);}public static void main(String[] args) {hanoi(3, 'A', 'B', 'C');}
}

 正确递归分析

  1.  当desk = n个圆盘时,需要将圆柱A上面的n-1个圆盘,借助圆柱C最终移动到圆柱B上;
  2. 此时圆柱A上就只剩1个圆盘,则直接从圆柱A移动到圆柱C;
  3. 圆柱B上的n-1个圆盘,借助圆柱A最终移动到圆柱C上;
  4. 此时圆柱B上就只剩一个圆盘,则直接从圆柱B移动到圆柱C;

 


正确代码分析

public class TowerOfHanoi {public static void hanoi(int n, char posA, char posB, char posC) {// hanoi(圆盘个数,参数1,参数2,参数3)// 参数1表示起始位置、参数2表示中转位置、参数3表示终止位置if(n == 1) {move(posA, posC);return; // 递归一定要return}// 这一步就是将 圆柱A 上的 n-1个 圆盘// 借助圆柱C 移动到 圆柱B上hanoi(n-1, posA, posC, posB);// 将圆柱A上剩下的一个移到圆柱C上move(posA, posC);hanoi(n-1, posB, posA, posC);}public static void move(char pos1, char pos2) {System.out.println(pos1 + "->" + pos2);}public static void main(String[] args) {hanoi(3, 'A', 'B', 'C');}
}

相关文章:

【Java】汉诺塔

汉诺塔 汉诺塔(Tower of Hanoi)(河内塔):把圆盘从下面开始按大小顺序重新摆放到另一根柱子上,并且小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。 汉诺塔规则 disk表示圆盘数一次只…...

Java实现对Html文本的处理

1.引入jsoup <dependency><groupId>org.jsoup</groupId><artifactId>jsoup</artifactId><version>1.8.3</version> </dependency> 2. html示例 示例代码&#xff1a; <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1…...

Vue项目创建与启动(2023超详细的图文教程)

目录 一、下载node.js 二、下载vue-cli与webpack插件 三、项目初始化(项目配置详细信息) 四、项目启动 五、Vue项目工程结构&#xff08;扩展知识&#xff09; 一、下载node.js 1.检测是否已经安装过node.js 打开控制台,输入 npm -v如果有会显示对应版本 如果没有会显示…...

EtherCAT主站读取从站EEPROM抓包分析

0 工具准备 1.EtherCAT主站 2.EtherCAT从站&#xff08;本文使用步进电机驱动器&#xff09; 3.Wireshark1 抓包分析 1.1 报文总览 本文让主站去读取从站1字地址为0的EEPROM数据内容&#xff0c;主站读取从站EEPROM数据内容使用Wireshark抓包如下&#xff1a; 1.2 EEPROM读…...

Elasticsearch 8.X 如何生成 TB 级的测试数据 ?

1、实战问题 我只想插入大量的测试数据&#xff0c;不是想测试性能&#xff0c;有没有自动办法生成TB级别的测试数据&#xff1f;有工具&#xff1f;还是说有测试数据集之类的东西&#xff1f;——问题来源于 Elasticsearch 中文社区https://elasticsearch.cn/question/13129 2…...

汽车标定技术(四)--问题分析:多周期测量时上位机显示异常

目录 1.问题现象 2.数据流分析 ​​​​3.代码分析 3.1 AllocDAQ 3.2 AllocOdt 3.3 AllocOdtEntry 4.根因分析及解决方法 4.1 根因分析 4.2 解决方案 1.问题现象 在手撸XCP代码时&#xff0c; DAQ的实现是一大头痛的事情。最初单周期实现还好一点&#xff0c;特别是…...

Flink SQL时间属性和窗口介绍

&#xff08;1&#xff09;概述 时间属性&#xff08;time attributes&#xff09;&#xff0c;其实就是每个表模式结构&#xff08;schema&#xff09;的一部分。它可以在创建表的 DDL 里直接定义为一个字段&#xff0c;也可以在 DataStream 转换成表时定义。 一旦定义了时间…...

Tomcat免安装版修改标题名称和进程

tomcat免安装版启动后闪退问题 问题描述 在官网下载的tomcat免安装版的你安装完环境后发现启动闪退&#xff0c;tomcat启动依赖环境是JDK&#xff0c;所以需要tomcat对应版本的JDK支持。 tomcat8官网下载地址&#xff1a;https://tomcat.apache.org/ JDK环境官网下载地址&…...

vim搜索、替换tab

bibtex 中的缩进可能不一致&#xff0c;强迫症犯了想将&#xff1a; 缩进空格改 tab&#xff1b;行首的多个 tab 改为单个 参考 [1]&#xff0c;空格换 tab 可以&#xff1a; :set noexpandtab :%retab!行首的多个 tab 换单个&#xff1a; :%s/^\t\/\t/gReferences Replac…...

一文读懂ARM安全性架构和可信系统构建要素

一文读懂ARM安全性架构和可信系统构建要素 所谓可信系统&#xff08;trusted system&#xff09;&#xff0c;即能够用于保护密码和加密密钥等资产&#xff08;assets&#xff09;免受一系列的可信攻击&#xff0c;防止其被复制、损坏或不可用&#xff08;unavailable&#xf…...

Voice vlan、ICMP、单臂路由、mux-vlan

目录 一&#xff0c;Voice VLAN Voice vlan配置命令 一&#xff0c;问&#xff1a;已知网络中一台服务器的IP地址&#xff0c;如何找到这太服务器在哪台交换机的哪个接口上​编辑 思路&#xff1a; 二&#xff0c;ICMP协议 三&#xff0c;ICMP案例分析​编辑 四&#xf…...

TCP IP 网络编程(七) 理解select和epoll的使用

文章目录 理解select函数select函数的功能和调用顺序设置文件描述符设置监视范围及超时select函数调用示例 优于select的epoll基于select的I/O复用速度慢实现epoll时必要的函数和结构体epoll_createepoll_ctlepoll_wait基于epoll的服务器端 边缘触发和水平触发 理解select函数 …...

Linux accept和FD_xxx的使用

Linux socket accept功能的作用是在服务器端等待并接受客户端的连接请求。当有客户端尝试连接服务器时&#xff0c;服务器调用accept函数来接受该连接请求&#xff0c;并创建一个新的socket来与该客户端进行通信。 具体来说&#xff0c;accept函数被动监听客户端的三次握手连接…...

树结构及其算法-二叉运算树

目录 树结构及其算法-二叉运算树 C代码 树结构及其算法-二叉运算树 二叉树的应用实际上相当广泛&#xff0c;例如表达式之间的转换。可以把中序表达式按运算符优先级的顺序建成一棵二叉运算树&#xff08;Binary Expression Tree&#xff0c;或称为二叉表达式树&#xff09;…...

vue的rules验证失效,部分可以部分又失效的原因

vue的rules验证失效,部分可以部分又失效的原因 很多百度都有,但是我这里遇到了一个特别的,那就是prop没有写全,导致验证某一个失效 例子: 正常写法 el-form-item....多个省略<el-form-item label"胶币" prop"cost"><el-input v-model"form.…...

c#字符串转整数类型

将字符串转换为整数类型。为了方便&#xff0c;C#提供了一个内置的方法TryParse来实现这个功能 字符串&#xff08;String&#xff09;&#xff1a;表示一串字符的数据类型。整数&#xff08;Integer&#xff09;&#xff1a;表示不带小数点的数字。解析&#xff08;Parsing&a…...

【LeetCode】118. 杨辉三角

118. 杨辉三角 难度&#xff1a;简单 题目 给定一个非负整数 *numRows&#xff0c;*生成「杨辉三角」的前 numRows 行。 在「杨辉三角」中&#xff0c;每个数是它左上方和右上方的数的和。 示例 1: 输入: numRows 5 输出: [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]示例…...

【Vue.js】Vue3全局配置Axios并解决跨域请求问题

系列文章目录 文章目录 系列文章目录背景一、部署Axios1. npm 安装 axios2. 创建 request.js&#xff0c;创建axios实例3. 在main.js中全局注册axios4. 在页面中使用axios 二、后端解决跨域请求问题方法一 解决单Contoller跨域访问方法二 全局解决跨域问题 背景 对于前后端分离…...

【车载开发系列】CRC循环冗余校验码原理

【车载开发系列】CRC循环冗余校验码原理 CRC循环冗余校验码原理 【车载开发系列】CRC循环冗余校验码原理一. CRC算法原理二. 生成多项式三. 多项式与其对应代码四. CRC码校验原理1&#xff09;发送端2&#xff09;接收端 五. CRC码原理方法1&#xff09;发送端生成CRC码方法2&a…...

数据库实验:SQL的数据更新

目录 实验目的实验内容实验要求实验步骤实验过程总结 再次书接上文&#xff0c;sql基础的增删改查 实验目的 (1) 掌握DBMS的数据查询功能 (2) 掌握SQL语言的数据更新功能 实验内容 (1) update 语句用于对表进行更新 (2) delete 语句用于对表进行删除 (3) insert 语句用于对表…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

visual studio 2022更改主题为深色

visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中&#xff0c;选择 环境 -> 常规 &#xff0c;将其中的颜色主题改成深色 点击确定&#xff0c;更改完成...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配

目录 一、C 内存的基本概念​ 1.1 内存的物理与逻辑结构​ 1.2 C 程序的内存区域划分​ 二、栈内存分配​ 2.1 栈内存的特点​ 2.2 栈内存分配示例​ 三、堆内存分配​ 3.1 new和delete操作符​ 4.2 内存泄漏与悬空指针问题​ 4.3 new和delete的重载​ 四、智能指针…...

抽象类和接口(全)

一、抽象类 1.概念&#xff1a;如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象&#xff0c;这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法&#xff0c;包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中&#xff0c;⼀个类如果被 abs…...

Modbus RTU与Modbus TCP详解指南

目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...

C++--string的模拟实现

一,引言 string的模拟实现是只对string对象中给的主要功能经行模拟实现&#xff0c;其目的是加强对string的底层了解&#xff0c;以便于在以后的学习或者工作中更加熟练的使用string。本文中的代码仅供参考并不唯一。 二,默认成员函数 string主要有三个成员变量&#xff0c;…...

内窥镜检查中基于提示的息肉分割|文献速递-深度学习医疗AI最新文献

Title 题目 Prompt-based polyp segmentation during endoscopy 内窥镜检查中基于提示的息肉分割 01 文献速递介绍 以下是对这段英文内容的中文翻译&#xff1a; ### 胃肠道癌症的发病率呈上升趋势&#xff0c;且有年轻化倾向&#xff08;Bray等人&#xff0c;2018&#x…...