二进制代码反汇编逆向工具:IDA Pro(WinMac)v7.7 汉化版
IDA Pro是一款交互式的、可编程的、可扩展的、多处理器的、交叉Windows或Linux WinCE MacOS平台主机来分析程序。它被公认为最好的花钱可以买到的逆向工程利器,已经成为事实上的分析敌意代码的标准并让其自身迅速成为攻击研究领域的重要工具。
IDA Pro的特点主要包括以下几点:
功能丰富:IDA Pro提供了诸多功能模块,如反汇编、调试器、脚本编写等,可以满足不同逆向分析需求。
多平台支持:IDA Pro支持多种操作系统和处理器架构,如Windows、Linux、ARM和x86等。
交互式:IDA Pro具有交互式的特点,用户可以与程序进行互动,实时查看和修改程序的状态和运行过程。
可编程性:IDA Pro具有强大的脚本编写功能,用户可以使用Python等编程语言编写自己的插件和脚本,扩展程序的功能和用途。
可扩展性:IDA Pro具有良好的扩展性,用户可以根据自己的需求添加新的功能模块和处理器支持。
多处理器支持:IDA Pro支持多处理器的分析,可以同时分析多个处理器,包括不同的指令集和架构。
交叉平台支持:IDA Pro可以在不同的操作系统和平台上运行,包括Windows、Linux、MacOS等。
强大的反汇编功能:IDA Pro的反汇编功能可以将二进制文件转换为汇编代码,方便分析人员理解和分析目标程序的执行逻辑。
总之,IDA Pro是一款功能强大、多平台支持、交互式、可编程、可扩展的逆向工程工具,广泛应用于软件分析、恶意软件分析、漏洞研究等领域。
win版:https://soft.macxf.com/soft/2059.html?id=MzE5MTM%3D
mac版:https://www.macz.com/mac/734.html?id=OTI2NjQ5Jl8mMjcuMTg2LjguMTc1
相关文章:

二进制代码反汇编逆向工具:IDA Pro(WinMac)v7.7 汉化版
IDA Pro是一款交互式的、可编程的、可扩展的、多处理器的、交叉Windows或Linux WinCE MacOS平台主机来分析程序。它被公认为最好的花钱可以买到的逆向工程利器,已经成为事实上的分析敌意代码的标准并让其自身迅速成为攻击研究领域的重要工具。 IDA Pro的特点主要包括…...
Android Studio开发(开篇)
前言 感谢哔站博主“白头Teacher”的“Android Studio-APP开发基础教程”教学视频。通过视频学习使我有了很好入门基础知识,后面我又通过搜集相关知识,并做了一些自主项目来巩固。 环境准备 1. 安装java开发工具包(JDK,即java开发环境),并配置…...

HarmonyOS列表组件
List组件的使用 import router from ohos.routerEntry Component struct Index {private arr: number[] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]build() {Row() {Column() {List({ space: 10 }) {ForEach(this.arr, (item: number) > {ListItem() {Text(${item}).width(100%).heig…...
使用vscode + lldb + codelldb调试可执行程序
主要是lauch.json的编写 // filename: lauch.json {// Use IntelliSense to learn about possible attributes.// Hover to view descriptions of existing attributes.// For more information, visit: https://go.microsoft.com/fwlink/?linkid830387"version": …...
Redis Functions 介绍(二)
首先,让我们先回顾一下上一篇讲的在Redis Functions中关于将key的名字作为参数和非key名字作为参数的区别,先看下面的例子 首先,我们先在一个Lua脚本文件mylib.lua中定义如下的库和函数 //--------------------mylib.lua 文件开始 --------…...

R语言环境下使用curl库做的爬虫代码示例
curl库是一个用于传输数据的工具和库,它支持多种协议,包括HTTP、FTP、SMTP等。在爬虫中,curl库可以用来获取网页内容,从而实现爬取网页的功能。通过设置curl的选项,可以实现对网页的请求、响应、重定向等操作。在使用c…...

【论文阅读】Equivariant Contrastive Learning for Sequential Recommendation
【论文阅读】Equivariant Contrastive Learning for Sequential Recommendation 文章目录 【论文阅读】Equivariant Contrastive Learning for Sequential Recommendation1. 来源2. 介绍3. 前置工作3.1 序列推荐的目标3.2 数据增强策略3.3 序列推荐的不变对比学习 4. 方法介绍4…...

智行破晓,驭未来航程!——经纬恒润智能驾驶数据闭环云平台OrienLink重磅来袭
2023是被AI技术标记的⼀年。年初,OpenAI的GPT崭露头角;6月,Tesla在CVPR2023上对World Model进行深度解读;8月,SIGGRAPH见证GH200、L40S显卡和ChatUSD的登场,FSD V12彰显端到端智能驾驶的实力;9月…...

深入理解WPF中的依赖注入和控制反转
在WPF开发中,依赖注入(Dependency Injection)和控制反转(Inversion of Control)是程序解耦的关键,在当今软件工程中占有举足轻重的地位,两者之间有着密不可分的联系。今天就以一个简单的小例子&…...

【CIO人物展】国家能源集团信息技术主管王爱军:中国企业数智化转型升级的内在驱动力...
王爱军 本文由国家能源集团信息技术主管王爱军投递并参与《2023中国数智化转型升级优秀CIO》榜单/奖项评选。丨推荐企业—锐捷网络 大数据产业创新服务媒体 ——聚焦数据 改变商业 随着全球信息化和网络化的进程日益加速,数字化转型已经成为当下各大企业追求的核心…...

(后续补充)vue+express、gitee pm2部署轻量服务器
首先 防火墙全部关闭算了 首先 防火墙全部关闭算了 首先 防火墙全部关闭算了 首先 防火墙全部关闭算了 首先 防火墙全部关闭算了 首先 防火墙全部关闭算了 关闭防火墙 systemctl stop firewalld 重新载入防火墙使设置生效 firewall-cmd --reload 后端的 pm2.config.cjs …...

第G7周:Semi-Supervised GAN 理论与实战
🍨 本文为🔗365天深度学习训练营 中的学习记录博客 🍦 参考文章:365天深度学习训练营-第G7周:Semi-Supervised GAN 理论与实战(训练营内部成员可读) 🍖 原作者:K同学啊|接…...

美国Embarcadero产品经理Marco Cantù谈Delphi/C++ Builder目前开发应用领域
美国Embarcadero产品经理Marco Cant 日前在欧洲的一次信息技术会议上谈到了Delphi/C Builder目前开发应用领域:RAD Studio Delphi/C Builder目前应用于哪些开发领域?使用 Delphi 和 CBuilder 进行开发为当今众多企业提供了动力。 航空航天 大型数据采集 …...

【iOS】——知乎日报第三周总结
文章目录 一、获取新闻额外信息二、工具栏按钮的布局三、评论区文字高度四、评论区长评论和短评论的数目显示五、评论区的cell布局问题和评论消息的判断 一、获取新闻额外信息 新闻额外信息的URL需要通过当前新闻的id来获取,所以我将所有的新闻放到一个数组中&…...

leetcode每日一题-周复盘
前言 该系列文章用于我对一周中leetcode每日一题or其他不会的题的复盘总结。 一方面用于自己加深印象,另一方面也希望能对读者的算法能力有所帮助。 该复盘对我来说比较容易的题我会复盘的比较粗糙,反之较为细致 解答语言:Golang 周一&a…...

[NLP] LlaMa2模型运行在Mac机器
本文将介绍如何使用llama.cpp在MacBook Pro本地部署运行量化版本的Llama2模型推理,并基于LangChain在本地构建一个简单的文档Q&A应用。本文实验环境为Apple M1 芯片 8GB内存。 Llama2和llama.cpp Llama2是Meta AI开发的Llama大语言模型的迭代版本,…...

基于若依的ruoyi-nbcio流程管理系统增加仿钉钉流程设计(六)
更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码: https://gitee.com/nbacheng/ruoyi-nbcio 演示地址:RuoYi-Nbcio后台管理系统 这节主要讲条件节点与并发节点的有效性检查,主要是增加这两个节点的子节点检查,因为…...

听GPT 讲Rust源代码--library/std(15)
题图来自 An In-Depth Comparison of Rust and C[1] File: rust/library/std/src/os/wasi/io/fd.rs 文件路径:rust/library/std/src/os/wasi/io/fd.rs 该文件的作用是实现与文件描述符(File Descriptor)相关的操作,具体包括打开文…...

腾讯云CVM服务器操作系统镜像大全
腾讯云CVM服务器的公共镜像是由腾讯云官方提供的镜像,公共镜像包含基础操作系统和腾讯云提供的初始化组件,公共镜像分为Windows和Linux两大类操作系统,如TencentOS Server、Windows Server、OpenCloudOS、CentOS Stream、CentOS、Ubuntu、Deb…...
Mxnet框架使用
目录 1.mxnet推理API 2.MXNET模型转ONNX 3.运行示例 1.mxnet推理API # 导入 MXNet 深度学习框架 import mxnet as mx if __name__ __main__:# 指定预训练模型的 JSON 文件json_file resnext50_32x4d # 指定模型的参数文件params_file resnext50_32x4d-0000.params # 使…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...

大数据零基础学习day1之环境准备和大数据初步理解
学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...

跨链模式:多链互操作架构与性能扩展方案
跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层…...

Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
Xen Server服务器释放磁盘空间
disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

技术栈RabbitMq的介绍和使用
目录 1. 什么是消息队列?2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...