当前位置: 首页 > news >正文

151、【动态规划】AcWing ——2. 01背包问题:二维数组+一维数组(C++版本)

题目描述

在这里插入图片描述
在这里插入图片描述
原题链接:2. 01背包问题

解题思路

(1)二维dp数组

动态规划五步曲:

(1)dp[i][j]的含义: 容量为j时,从物品1-物品i中取物品,可达到的最大价值

(2)递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v[i]] + w[i]),其中dp[i - 1][j]表示不放物品i时的最大价值;j - v[i]表示给物品i留出空间,dp[i - 1][j - v[i]]表示给物品i留出空间后,放入其余物品可达到的最大价值(由于是按物品递增顺序遍历,因此为从1-i-1的物品),dp[i - 1][j - v[i]] + w[i]表示放入物品i和其余放入其余物品,可到达的最大价值。

(3)dp数组初始化: dp[0][j] = d[i][0] = 0, dp[0][j]中j >= v[i]的取w[i]

(4)遍历顺序: 从小到大,先背包后物品,或先物品后背包都可以。

(5)举例: **加粗样式**

#include <iostream>
#include <cstring>
#include <algorithm>using namespace std;const int N = 1010;
int dp[N][N];int main(){int n, m;int v[N], w[N];cin >> n >> m;for(int i = 1; i <= n; i++)         cin >> v[i] >> w[i];for(int i = 1; i <= n; i++) {for(int j = 1; j <= m; j++) {// 当前物品重量大于背包容量时,不放该物品if(j < v[i])        dp[i][j] = dp[i - 1][j];// 当前物品重量小于等于背包容量时,在放该物品后和不放该物品之间选择一个最大价值else                dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v[i]] + w[i]);}}cout << dp[n][m] << endl;return 0;
}

(2)优化为一维dp数组(滚动数组)

滚动数组含义:本轮所计算的数,需要用到上一轮的结果,依次类推,滚动计算。

优化成一维那就要在遍历上实现与二维相同的逻辑顺序,从而实现仅用一维就可以代替二维。

动态规划五步曲:

(1)dp[j]数组的含义: 容量为j时,装入的物品可达到的最大价值。

(2)递推公式: dp[j] = max(dp[j], dp[j - v[i]])

(3)dp数组初始化: dp[0] = 0

(4)遍历顺序: 两层for循环,先遍历物品,再遍历背包,内层按背包从大到小递减顺序遍历。
如果删除dp中的维度[i]后,还保持对j的从小到大遍历,那么此时的代码其实是等价于dp[i][j] = max(dp[i][j - 1], dp[i][j - v[i]),在一遍后续遍历中,因为j是从小到大与v[i]相减,在后续相减时,可能会出现本轮遍历中用过的数,会使之前使用过的数重复相加。

而如果以对j进行从大到小遍历,因为此时是j是从mv[i],以此顺序计算dp[j - v[i]]时,在一遍后续遍历中,都是会基于上一轮对i的遍历而进行判定,并且由于j变化而v[i]不变,在后续不会出现使用过的数重复相加。每次遍历到的j所对应dp[j - v[i]]都还没有被更新,就相当于是之前的状态dp[i - 1][j - v[i]],从而得到dp[j] = dp[j - v[i]]就等价于dp[i][j] = dp[i - 1][j - v[i]]

(5)举例: 在这里插入图片描述

#include <iostream>
#include <cstring>
#include <algorithm>using namespace std;const int N = 1010;
int dp[N];int main(){int n, m;int v[N], w[N];cin >> n >> m;for(int i = 1; i <= n; i++)         cin >> v[i] >> w[i];for(int i = 1; i <= n; i++) {// 从后向前遍历,表示装入一个物品后,剩余的可装入容量达到的最大价值for(int j = m; j >= v[i]; j--) {dp[j] = max(dp[j], dp[j - v[i]] + w[i]);}}cout << dp[m] << endl;return 0;
}

参考文章:AcWing 2. 01背包问题(状态转移方程讲解) 、AcWing 2. 01背包问题 、动态规划:关于01背包问题,你该了解这些!(滚动数组)

相关文章:

151、【动态规划】AcWing ——2. 01背包问题:二维数组+一维数组(C++版本)

题目描述 原题链接&#xff1a;2. 01背包问题 解题思路 &#xff08;1&#xff09;二维dp数组 动态规划五步曲&#xff1a; &#xff08;1&#xff09;dp[i][j]的含义&#xff1a; 容量为j时&#xff0c;从物品1-物品i中取物品&#xff0c;可达到的最大价值 &#xff08;2…...

DS期末复习卷(二)

选择题 1&#xff0e;下面关于线性表的叙述错误的是&#xff08; D &#xff09;。 (A) 线性表采用顺序存储必须占用一片连续的存储空间 (B) 线性表采用链式存储不必占用一片连续的存储空间 © 线性表采用链式存储便于插入和删除操作的实现 (D) 线性表采用顺序存储便于插…...

大数据技术架构(组件)31——Spark:Optimize--->JVM On Compute

2.1.9.4、Optimize--->JVM On Compute首要的一个问题就是GC,那么先来了解下其原理&#xff1a;1、内存管理其实就是对象的管理&#xff0c;包括对象的分配和释放&#xff0c;如果显式的释放对象&#xff0c;只要把该对象赋值为null&#xff0c;即该对象变为不可达.GC将负责回…...

ETL基础概念及要求详解

ETL基础概念及要求详解概念ETL与ELT数据湖与数据仓库ETL应用场景ETL具体流程及操作要求抽取清洗转换加载ETL设计模式SQL脚本语言ETL工具设计ETL工具SQLETL接口设计要求明确接口属性约定接口形式确定接口抽取方法规范接口格式概念 ETL即Extract&#xff08;抽取&#xff09;Tra…...

刷题记录:牛客NC23054华华开始学信息学 线段树+分块

传送门:牛客 题目描述: 题目latex公式较多,此处省略 输入: 10 6 1 1 1 2 4 6 1 3 2 2 5 7 1 6 10 2 1 10 输出: 3 5 26这道题让我体验到的线段树相对于树状数组的常数巨大 我们倘若直接用单点修改的话&#xff0c;如果D过小比如1那么我们足足要加n次&#xff0c;时间复杂度爆…...

二叉搜索树(查找,插入,删除)

目录 1.概念 2.性质 3.二叉搜索树的操作 1.查找 2.插入 3.删除(难点) 1.概念 二叉搜索树又称二叉排序树.利用中序遍历它就是一个有顺序的一组数. 2.性质 1.若它的左子树不为空,则左子树上所有节点的值都小于根节点的值 2.若它的右子树不为空,则右子树上所有节点的值都…...

C# PictureEdit 加载图片

方法一&#xff1a; 如果要加载的图片的长宽比不是太过失衡&#xff0c; 1.可以改变picturebox的SizeMode属性为 PictureBoxSizeMode.StretchImage&#xff0c; 2.或者Dev控件 PictureEdit的SizeMode属性为Zoom。&#xff08;zoom:缩放&#xff1b;clip剪短&#xff1b;stret…...

3种方法设置PDF“打开密码”,总有一种适合你

PDF文件是我们工作中经常用到的文件之一&#xff0c;对于重要的文件&#xff0c;设置“打开密码”是一种很好的保护方式。下面就来说说&#xff0c;设置PDF“打开密码”有哪三种方法&#xff1f; 方法一&#xff1a;在线网站加密 市面上有很多可以直接在线上加密PDF文件的产品…...

第三章 数据链路层(点到点的传输服务)-计算机网络(笔记)

计算机网络 第三章 数据链路层&#xff08;点到点的传输服务&#xff09; 数据链路层属于计算机网络的低层。数据链路层使用的信道主要有以下两种类型&#xff1a; &#xff08;1&#xff09;点到点信道。这种信道使用一对一的点到点通信方式。 &#xff08;2&#xff09;广…...

volatile关键字与CAS机制

volatile关键字 volatile关键字可以对类的成员变量与静态变量进行修饰 volatile关键字的作用 1.保证被修饰属性的可见性,被修饰后的属性如果被更改后其他线程是会立即可见的 2.保证被修饰属性的有序性,被修饰后的属性禁止修改指令执行的顺序 注意:volatile关键字不能保证属性…...

LeetCode题解 动态规划(四):416 分割等和子集;1049 最后一块石头的重量 II

背包问题 下图将背包问题做了分类 其中之重点&#xff0c;是01背包&#xff0c;即一堆物件选哪样不选哪样放入背包里。难度在于&#xff0c;以前的状态转移&#xff0c;多只用考虑一个变量&#xff0c;比如爬楼梯的阶层&#xff0c;路径点的选择&#xff0c;这也是能用滚动数组…...

【FFMPEG源码分析】从ffplay源码摸清ffmpeg框架(二)

demux模块 从前面一篇文章中可以得知&#xff0c;demux模块的使用方法大致如下: 分配AVFormatContext通过avformat_open_input(…)传入AVFormatContext指针和文件路径&#xff0c;启动demux通过av_read_frame(…) 从AVFormatContext中读取demux后的audio/video/subtitle数据包…...

PCIE 学习笔记(入门简介)

PCIE 学习笔记书到用时方恨少啊&#xff0c;一年前学PCIE的笔记&#xff0c;再拿出来瞅瞅。发到博客上&#xff0c;方便看。PCIE基础PCIE和PCI的不同PCIE采用差分信号传输&#xff0c;并且是dual-simplex传输——每条lane上有TX通道和RX通道&#xff0c;所以每条lane上的信号是…...

锁的优化机制了解嘛?请进!

点个关注&#xff0c;必回关 文章目录自旋锁&#xff1a;自适应锁&#xff1a;锁消除&#xff1a;锁粗化&#xff1a;偏向锁&#xff1a;轻量级锁&#xff1a;从JDK1.6版本之后&#xff0c;synchronized本身也在不断优化锁的机制&#xff0c;有些情况下他并不会是一个很重量级的…...

5.点赞功能 Redis

Redis&#xff08;1&#xff09;简介Redis 是一个高性能的 key-value 数据库原子 – Redis的所有操作都是原子性的。多个操作也支持事务&#xff0c;即原子性&#xff0c;通过MULTI和EXEC指令包起来。非关系形数据库数据全部存在内存中&#xff0c;性能高。&#xff08;2&#…...

Java序列化和反序列化(详解)

一、理解Java序列化和反序列化 Serialization(序列化)&#xff1a;将java对象以一连串的字节保存在磁盘文件中的过程&#xff0c;也可以说是保存java对象状态的过程。序列化可以将数据永久保存在磁盘上(通常保存在文件中)。 deserialization(反序列化)&#xff1a;将保存在磁…...

【刷题篇】链表(上)

前言&#x1f308;前段时间我们学习了单向链表和双向链表&#xff0c;本期将带来3道与链表相关的OJ题来巩固对链表的理解。话不多说&#xff0c;让我们进入今天的题目吧&#xff01;&#x1f680;本期的题目有&#xff1a;反转单链表、链表的中间结点、合并两个有序链表反转单链…...

ConcurrentHashMap设计思路

ConcurrentHashMap设计思路Hashtable vs ConcurrentHashMapHashtable vs ConcurrentHashMap Hashtable 对比 ConcurrentHashMap Hashtable 与 ConcurrentHashMap 都是线程安全的 Map 集合Hashtable 并发度低&#xff0c;整个 Hashtable 对应一把锁&#xff0c;同一时刻&#…...

Unity基于GraphView的行为树编辑器

这里写自定义目录标题概述基于GitHub上&#xff1a;目前这只是做了一些比较基础的功能节点开发&#xff0c;仅仅用于学习交流&#xff0c;非完成品。项目GitHub连接&#xff1a;[https://github.com/HengyuanLee/BehaviorTreeExamples](https://github.com/HengyuanLee/Behavio…...

网络流量传输MTU解析

基本概念 以太网的链路层对数据帧的长度会有一个限制&#xff0c;其最大值默认是1500字节&#xff0c;链路层的这个特性称为MTU&#xff0c;即最大传输单元 Maximum Transmission Unit&#xff0c;最大传输单元&#xff0c;指的是数据链路层的最大payload&#xff0c;由硬件网…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云

目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP

编辑-虚拟网络编辑器-更改设置 选择桥接模式&#xff0c;然后找到相应的网卡&#xff08;可以查看自己本机的网络连接&#xff09; windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置&#xff0c;选择刚才配置的桥接模式 静态ip设置&#xff1a; 我用的ubuntu24桌…...

Linux部署私有文件管理系统MinIO

最近需要用到一个文件管理服务&#xff0c;但是又不想花钱&#xff0c;所以就想着自己搭建一个&#xff0c;刚好我们用的一个开源框架已经集成了MinIO&#xff0c;所以就选了这个 我这边对文件服务性能要求不是太高&#xff0c;单机版就可以 安装非常简单&#xff0c;几个命令就…...