FPGA高端项目:图像采集+GTP+UDP架构,高速接口以太网视频传输,提供2套工程源码加QT上位机源码和技术支持
目录
- 1、前言
- 免责声明
- 本项目特点
- 2、相关方案推荐
- 我这里已有的 GT 高速接口解决方案
- 我这里已有的以太网方案
- 3、设计思路框架
- 设计框图
- 视频源选择
- OV5640摄像头配置及采集
- 动态彩条
- 视频数据组包
- GTP 全网最细解读
- GTP 基本结构
- GTP 发送和接收处理流程
- GTP 的参考时钟
- GTP 发送接口
- GTP 接收接口
- GTP IP核调用和使用
- 数据对齐
- 视频数据解包
- 图像缓存
- UDP数据组包
- UDP协议栈
- UDP协议栈数据发送
- IP地址、端口号的修改
- Tri Mode Ethernet MAC介绍以及移植注意事项
- RTL8211
- QT上位机和源码
- 4、vivado工程1-->1路SFP传输
- 5、vivado工程2-->2路SFP传输
- 6、工程移植说明
- vivado版本不一致处理
- FPGA型号不一致处理
- 其他注意事项
- 7、上板调试验证并演示
- 准备工作
- ping一下
- 静态演示
- 动态演示
- 8、福利:工程源码获取
FPGA高端项目:图像采集+GTP+UDP架构,高速接口以太网视频传输,提供2套工程源码加QT上位机源码和技术支持
1、前言
没玩过图像处理、GT高速接口、UDP网络通信,都不好意思说自己玩儿过FPGA,这是CSDN某大佬说过的一句话,鄙人深信不疑。。。GT资源是Xilinx系列FPGA的重要卖点,也是做高速接口的基础,不管是PCIE、SATA、MAC等,都需要用到GT资源来做数据高速串化和解串处理,Xilinx不同的FPGA系列拥有不同的GT资源类型,低端的A7由GTP,K7有GTX,V7有GTH,更高端的U+系列还有GTY等,他们的速度越来越高,应用场景也越来越高端。。。
本文使用Xilinx的Artix7 FPGA的GTP资源和板载的RTL8211网络PHY做GTP aurora 8b/10b编解码 UDP网络视频传输实验,视频源有两种,分别对应开发者手里有没有摄像头的情况,一种是使用廉价的OV5640摄像头模组;如果你得手里没有摄像头,或者你得开发板没有摄像头接口,则可使用代码内部生成的动态彩条模拟摄像头视频;视频源的选择通过代码顶层的define宏定义进行,上电默认使用ov5640作为视频源;FPGA采集到视频数据后,将视频数据进行数据组包,然后调用GTP IP核,配置为8b/10b编解码模式,将组包的视频数据送入GTP编码发送出去,然后再GTP解码接收,用verilog编写视频数据对齐和视频数据解包模块解析出有效的视频数据,并恢复行场等时序,然后将视频送到DDR3进行缓存,再读出视频送UDP协议栈进行UDP协议编码,再调用Xilinx官方的Tri Mode Ethernet MAC作为MAC层,最后通过板载的RTL8211将视频通过网络数据形式发送PC,PC端用QT上位机接收图像并显示出来;
提供2套vivado2019.1版本的工程源码;2套工程的区别在于使用1个SFP光口还是使用2个SFP光口,详情请看第3章节的设计思路框架;工程代码可综合编译上板调试,可直接项目移植,适用于在校学生、研究生项目开发,也适用于在职工程师做学习提升,可应用于医疗、军工等行业的高速接口或图像处理领域;
提供完整的、跑通的工程源码和技术支持;
工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后;
免责声明
本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。
本项目特点
本项目是一个综合性的高端项目,从宏观上可以分为硬件和软件的结合,硬件指的是FPGA逻辑的实现,软件指的是PC端QT上位机的实现;从FPGA应用领域上可以分为图像处理、高速接口、网络传输三大领域,这三大领域是目前FPGA的主流应用,图像处理属于基础应用,网络传输属于中等应用,高速接口属于高端应用;这个工程直接将三者结合,在实际应用中很有需求,但市面上会的人很少。。。
2、相关方案推荐
我这里已有的 GT 高速接口解决方案
我的主页有FPGA GT 高速接口专栏,该专栏有 GTP 、 GTX 、 GTH 、 GTY 等GT 资源的视频传输例程和PCIE传输例程,其中 GTP基于A7系列FPGA开发板搭建,GTX基于K7或者ZYNQ系列FPGA开发板搭建,GTH基于KU或者V7系列FPGA开发板搭建,GTY基于KU+系列FPGA开发板搭建;以下是专栏地址:
点击直接前往
我这里已有的以太网方案
目前我这里有大量UDP协议的工程源码,包括UDP数据回环,视频传输,AD采集传输等,也有TCP协议的工程,还有RDMA的NIC 10G 25G 100G网卡工程源码,对网络通信有需求的兄弟可以去看看:直接点击前往
其中10G万兆TCP协议的工程博客如下:
直接点击前往
3、设计思路框架
本文使用Xilinx的Artix7 FPGA的GTP资源和板载的RTL8211网络PHY做GTP aurora 8b/10b编解码 UDP网络视频传输实验,视频源有两种,分别对应开发者手里有没有摄像头的情况,一种是使用廉价的OV5640摄像头模组;如果你得手里没有摄像头,或者你得开发板没有摄像头接口,则可使用代码内部生成的动态彩条模拟摄像头视频;视频源的选择通过代码顶层的define宏定义进行,上电默认使用ov5640作为视频源;FPGA采集到视频数据后,将视频数据进行数据组包,然后调用GTP IP核,配置为8b/10b编解码模式,将组包的视频数据送入GTP编码发送出去,然后再GTP解码接收,用verilog编写视频数据对齐和视频数据解包模块解析出有效的视频数据,并恢复行场等时序,然后将视频送到DDR3进行缓存,再读出视频送UDP协议栈进行UDP协议编码,再调用Xilinx官方的Tri Mode Ethernet MAC作为MAC层,最后通过板载的RTL8211将视频通过网络数据形式发送PC,PC端用QT上位机接收图像并显示出来;提供2套vivado2019.1版本的工程源码;2套工程的区别在于使用1个SFP光口还是使用2个SFP光口
设计框图
使用2个SFP光口框图如下:
注意:框图中的数字表示数据流向的顺序;
使用1个SFP光口框图如下:
注意:框图中的数字表示数据流向的顺序;
视频源选择
视频源有两种,分别对应开发者手里有没有摄像头的情况,如果你的手里有摄像头,或者你的开发板有摄像头接口,则使用摄像头作为视频输入源,我这里用到的是廉价的OV5640摄像头模组;如果你得手里没有摄像头,或者你得开发板没有摄像头接口,则可使用代码内部生成的动态彩条模拟摄像头视频,动态彩条是移动的画面,完全可以模拟视频;默认使用ov5640作为视频源;视频源的选择通过代码顶层的`define宏定义进行;如下:
选择逻辑代码部分如下:
选择逻辑如下:
当(注释) define COLOR_IN时,输入源视频是ov5640摄像头;
当(不注释) define COLOR_IN时,输入源视频是动态彩条;
OV5640摄像头配置及采集
OV5640摄像头需要i2c配置才能使用,需要将DVP接口的视频数据采集为RGB565或者RGB888格式的视频数据,这两部分均用verilog代码模块实现,代码位置如下:
其中摄像头配置为分辨率1280x720,如下:
摄像头采集模块支持RGB565和RGB888格式的视频输出,可由参数配置,如下:
RGB_TYPE=0输出本RGB565格式;
RGB_TYPE=1输出本RGB888格式;
本设计选择RGB565格式;
动态彩条
动态彩条可配置为不同分辨率的视频,视频的边框宽度,动态移动方块的大小,移动速度等都可以参数化配置,我这里配置为辨率1280x720,动态彩条模块代码位置和顶层接口和例化如下:
视频数据组包
由于视频需要在GTP中通过aurora 8b/10b协议收发,所以数据必须进行组包,以适应aurora 8b/10b协议标准;视频数据组包模块代码位置如下:
首先,我们将16bit的视频存入FIFO中,存满一行时就从FIFO读出送入GTP发送;在此之前,需要对一帧视频进行编号,也叫作指令,GTP组包时根据固定的指令进行数据发送,GTP解包时根据固定的指令恢复视频的场同步信号和视频有效信号;当一帧视频的场同步信号上升沿到来时,发送一帧视频开始指令 0,当一帧视频的场同步信号下降沿到来时,发送一帧视频开始指令 1,视频消隐期间发送无效数据 0 和无效数据 1,当视频有效信号到来时将每一行视频进行编号,先发送一行视频开始指令,在发送当前的视频行号,当一行视频发送完成后再发送一行视频结束指令,一帧视频发送完成后,先发送一帧视频结束指令 0,再发送一帧视频结束指令 1;至此,一帧视频则发送完成,这个模块不太好理解,所以我在代码里进行了详细的中文注释,需要注意的是,为了防止中文注释的乱序显示,请用notepad++编辑器打开代码;指令定义如下:
指令可以任意更改,但最低字节必须为bc;
GTP 全网最细解读
关于GTP介绍最详细的肯定是Xilinx官方的《ug482_7Series_GTP_Transceivers》,我们以此来解读:
《ug482_7Series_GTP_Transceivers》的PDF文档我已放在了资料包里,文章末尾有获取方式;
我用到的开发板FPGA型号为Xilinx Artix7 xc7a35tfgg484-2;带有4路GTP资源,每通道的收发速度为 500 Mb/s 到 6.6 Gb/s 之间。GTP 收发器支持不同的串行传输接口或协议,比如 PCIE 1.1/2.0 接口、万兆网 XUAI 接口、OC-48、串行 RapidIO 接口、 SATA(Serial ATA) 接口、数字分量串行接口(SDI)等等;
调用GTP做aurora 8b/10b协议的数据编解码,前面已经对GTP做了详细概述,这里不讲;代码位置如下:
需要注意的是,我一共调用了5个GTP,速率分别为1G、2G、4G、5G;代码中用一个参数选择速率,如下:
GTP_RATE=8’d1,GTP以1G线速率运行;
GTP_RATE=8’d2,GTP以2G线速率运行;
GTP_RATE=8’d4,GTP以4G线速率运行;
GTP_RATE=8’d5,GTP以5G线速率运行;
以我的测试来看,GTP以4G线速率运行时视频传输效果最佳;
GTP 基本结构
Xilinx 以 Quad 来对串行高速收发器进行分组,四个串行高速收发器和一个 COMMOM(QPLL)组成一个 Quad,每一个串行高速收发器称为一个 Channel(通道),下图为四路 GTP 收发器在Artix-7 FPGA 芯片中的示意图:《ug482_7Series_GTP_Transceivers》第13页;
GTP 的具体内部逻辑框图如下所示,它由四个收发器通道 GTPE2_CHANNEL原语 和一个GTPE2_COMMON 原语 组成。每路 GTPE2_CHANNEL 包含发送电路 TX 和接收电路 RX;《ug482_7Series_GTP_Transceivers》第14页;
每个 GTPE2_CHANNEL 的逻辑电路如下图所示:《ug482_7Series_GTP_Transceivers》第15页;
GTPE2_CHANNEL 的发送端和接收端功能是独立的,均由 PMA(Physical Media Attachment,物理媒介适配层)和 PCS(Physical Coding Sublayer,物理编码子层)两个子层组成。其中 PMA 子层包含高速串并转换(Serdes)、预/后加重、接收均衡、时钟发生器及时钟恢复等电路。PCS 子层包含8B/10B 编解码、缓冲区、通道绑定和时钟修正等电路。
这里说多了意义不大,因为没有做过几个大的项目是不会理解这里面的东西的,对于初次使用或者想快速使用者而言,更多的精力应该关注IP核的调用和使用,后面我也会重点将到IP核的调用和使用;
GTP 发送和接收处理流程
首先用户逻辑数据经过 8B/10B 编码后,进入一个发送缓存区(Phase Adjust FIFO),该缓冲区主要是 PMA 子层和 PCS 子层两个时钟域的时钟隔离,解决两者时钟速率匹配和相位差异的问题,最后经过高速 Serdes 进行并串转换(PISO),有必要的话,可以进行预加重(TX Pre-emphasis)、后加重。值得一提的是,如果在 PCB 设计时不慎将 TXP 和 TXN 差分引脚交叉连接,则可以通过极性控制(Polarity)来弥补这个设计错误。接收端和发送端过程相反,相似点较多,这里就不赘述了,需要注意的是 RX 接收端的弹性缓冲区,其具有时钟纠正和通道绑定功能。这里的每一个功能点都可以写一篇论文甚至是一本书,所以这里只需要知道个概念即可,在具体的项目中回具体用到,还是那句话:对于初次使用或者想快速使用者而言,更多的精力应该关注IP核的调用和使用。
GTP 的参考时钟
GTP 模块有两个差分参考时钟输入管脚(MGTREFCLK0P/N 和 MGTREFCLK1P/N),作为 GTP模块的参考时钟源,用户可以自行选择。一般的A7系列开发板上,都有一路 125Mhz 的 GTP 参考时钟连接到 MGTREFCLK0/1上,作为 GTP 的参考时钟。差分参考时钟通过IBUFDS 模块转换成单端时钟信号进入到 GTPE2_COMMOM 的 PLL0 和 PLL1 中,产生 TX 和 RX 电路中所需的时钟频率。TX 和 RX 收发器速度相同的话,TX 电路和 RX 电路可以使用同一个 PLL 产生的时钟,如果 TX 和 RX收发器速度不相同的话,需要使用不同的 PLL 时钟产生的时钟。参考时钟这里Xilinx给出的GT参考例程已经做得很好了,我们调用时其实不用修改;GTP 的参考时钟结构图如下:《ug482_7Series_GTP_Transceivers》第21页;
GTP 发送接口
《ug482_7Series_GTP_Transceivers》的第75到123页详细介绍了发送处理流程,其中大部分内容对于用户而言可以不去深究,因为手册讲的基本都是他自己的设计思想,留给用户可操作的接口并不多,基于此思路,我们重点讲讲GTP例化时留给用户的发送部分需要用到的接口;
用户只需要关心发送接口的时钟和数据即可,GTP例化模块的这部分接口如下:
在代码中我已为你们重新绑定并做到了模块的顶层,代码部分如下:
GTP 接收接口
《ug482_7Series_GTP_Transceivers》的第125到213页详细介绍了发送处理流程,其中大部分内容对于用户而言可以不去深究,因为手册讲的基本都是他自己的设计思想,留给用户可操作的接口并不多,基于此思路,我们重点讲讲GTP例化时留给用户的发送部分需要用到的接口;
用户只需要关心接收接口的时钟和数据即可,GTP例化模块的这部分接口如下:
在代码中我已为你们重新绑定并做到了模块的顶层,代码部分如下:
GTP IP核调用和使用
有别于网上其他博主的教程,我个人喜欢用如下图的共享逻辑:
这样选择的好处有两个,一是方便DRP变速,二是便于IP核的修改,修改完IP核后直接编译即可,不再需要打开example工程,再复制下面的一堆文件放到自己的工程什么的,玩儿个GTP需要那么复杂么?
这里对上图的标号做解释:
1:线速率,根据自己的项目需求来,GTP的范围是0.5到6.25G,由于我的项目是视频传输,所以在GTP的速率范围内均可,为了通用性,我在vivado工程中例化了5个GTP,速率分别为1G、2G、4G、5G;
2:参考时钟,这个得根据你的原理图来,可以是80M、125M、148.5M、156.25M等等,我的开发板是125M;
4:GTP组的绑定,这个很重要,他的绑定参考依据有两个,已是你的开发板原理图,而是官方的参考资料《ug482_7Series_GTP_Transceivers》,官方将GTP资源分成了4组,名字分别为X0Y0、X0Y1、X0Y2、X0Y3,由于GT资源是Xilinx系列FPGA的专用资源,占用专用的Bnak,所以引脚也是专用的,那么这些GTP组和引脚是怎么对应的呢?《ug482_7Series_GTP_Transceivers》的说明如下:红框内为的我的开发板原理图对应的FPGA引脚;
我的板子原理图如下:
选择外部数据位宽32bit的8b/10b编解码,如下:
下面这里讲的是K码检测:
这里选择K28.5,也就是所谓的COM码,十六进制为bc,他的作用很多,可以表示空闲乱序符号,也可以表示数据错位标志,这里用来标志数据错位,8b/10b协议对K码的定义如下:
下面讲的是时钟矫正,也就是对应GTP内部接收部分的弹性buffer;
这里有一个时钟频偏的概念,特别是收发双方时钟不同源时,这里设置的频偏为100ppm,规定每隔5000个数据包发送方发送一个4字节的序列,接收方的弹性buffer会根据这4字节的序列,以及数据在buffer中的位置来决定删除或者插入一个4字节的序列中的一个字节,目的是确保数据从发送端到接收端的稳定性,消除时钟频偏的影响;
数据对齐
由于GT资源的aurora 8b/10b数据收发天然有着数据错位的情况,所以需要对接受到的解码数据进行数据对齐处理,数据对齐模块代码位置如下:
我定义的 K 码控制字符格式为:XX_XX_XX_BC,所以用一个rx_ctrl 指示数据是否为 K 码 的 COM 符号;
rx_ctrl = 4’b0000 表示 4 字节的数据没有 COM 码;
rx_ctrl = 4’b0001 表示 4 字节的数据中[ 7: 0] 为 COM 码;
rx_ctrl = 4’b0010 表示 4 字节的数据中[15: 8] 为 COM 码;
rx_ctrl = 4’b0100 表示 4 字节的数据中[23:16] 为 COM 码;
rx_ctrl = 4’b1000 表示 4 字节的数据中[31:24] 为 COM 码;
基于此,当接收到有K码时就对数据进行对齐处理,也就是将数据打一拍,和新进来的数据进行错位组合,这是FPGA的基础操作,这里不再赘述;
视频数据解包
数据解包是数据组包的逆过程,代码位置如下:
GTP解包时根据固定的指令恢复视频的场同步信号和视频有效信号;这些信号是作为后面图像缓存的重要信号;
至此,数据进出GTP部分就已经讲完了,整个过程的框图我在代码中描述了,如下:
图像缓存
经常看我博客的老粉应该都知道,我做图像缓存的套路是FDMA,他的作用是将图像送入DDR中做3帧缓存再读出显示,目的是匹配输入输出的时钟差和提高输出视频质量,关于FDMA,请参考我之前的博客,博客地址:点击直接前往
需要注意的是,为了适应UDP视频传输,这里的FDMA已被我修改,和以往版本不同,具体参考代码;
UDP数据组包
实现UDP数据的组包,UDP数据发送必须与QT上位机的接受程序一致,上位机定义的UDP帧格式包括帧头个UDP数据,帧头定义如下:
FPGA端的UDP数据组包代码必须与上图的数据帧格式对应,否则QT无法解析,代码中定义了数据组包状态机以及数据帧,如下:
另外,由于UDP发送是64位数据位宽,而图像像素数据是24bit位宽,所以必须将UDP数据重新组合,以保证像素数据的对齐,这部分是整个工程的难点,也是所有FPGA做UDP数据传输的难点;
UDP协议栈
本UDP协议栈方案需配合Xilinx的Tri Mode Ethernet MAC三速网IP一起使用,使用UDP协议栈网表文件,虽看不见源码但可正常实现UDP通信,该协议栈目前并不开源,只提供网表文件,但不影响使用,该协议栈带有用户接口,使得用户无需关心复杂的UDP协议而只需关心简单的用户接口时序即可操作UDP收发,非常简单;
协议栈架构如下:
协议栈性能表现如下:
1:支持 UDP 接收校验和检验功能,暂不支持 UDP 发送校验和生成;
2:支持 IP 首部校验和的生成和校验,同时支持 ICMP 协议中的 PING 功能,可接收并响应同一个子网内部设备的 PING 请求;
3:可自动发起或响应同一个子网内设备的 ARP 请求,ARP 收发完全自适应。ARP 表可保存同一个子网内部256 个 IP 和 MAC 地址对;
4:支持 ARP 超时机制,可检测所需发送数据包的目的 IP 地址是否可达;
5:协议栈发送带宽利用率可达 93%,高发送带宽下,内部仲裁机制保证 PING 和 ARP 功能不受任何影响;
6:发送过程不会造成丢包;
7:提供64bit位宽AXI4-Stream形式的MAC接口,可与Xilinx官方的千兆以太网IP核Tri Mode Ethernet MAC,以及万兆以太网 IP 核 10 Gigabit Ethernet Subsystem、10 Gigabit Ethernet MAC 配合使用;
有了此协议栈,我们无需关心复杂的UDP协议的实现了,直接调用接口即可使用。。。
本UDP协议栈用户接口发送时序如下:
本UDP协议栈用户接口接收时序如下:
UDP协议栈数据发送
UDP协议栈具有发送和接收功能,但这里仅用到了发送,此部分代码架构如下:
UDP协议栈代码组我已经做好,用户可直接拿去使用;
这里对代码中用到的数据缓冲FIFO组做如下解释:
由于 UDP IP 协议栈的 AXI-Stream 数据接口位宽为 64bit,而 Tri Mode Ethernet MAC 的 AXI-Stream数据接口位宽为 8bit。因此,要将 UDP IP 协议栈与 Tri Mode Ethernet MAC 之间通过 AXI-Stream 接口互联,需要进行时钟域和数据位宽的转换。实现方案如下图所示:
收发路径(本设计只用到了发送)都使用了2个AXI-Stream DATA FIFO,通过其中1个FIFO实现异步时钟域的转换,1个FIFO实
现数据缓冲和同步Packet mode功能;由于千兆速率下Tri Mode Ethernet MAC的AXI-Stream数据接口同步时钟信号为125MHz,此时,UDP协议栈64bit的AXI-Stream数据接口同步时钟信号应该为125MHz/(64/8)=15.625MHz,因此,异步
AXI-Stream DATA FIFO两端的时钟分别为125MHz(8bit),15.625MHz(64bit);UDP IP协议栈的AXI-Stream接口经过FIFO时钟域转换后,还需要进行数据数据位宽转换,数据位宽的转换通过AXI4-Stream Data Width Converter完成,在接收路径中,进行 8bit 到 64bit 的转换;在发送路径中,进行 64bit 到 8bit 的转换;
IP地址、端口号的修改
UDP协议栈留出了IP地址、端口号的修改端口供用户自由修改,位置如下:
Tri Mode Ethernet MAC介绍以及移植注意事项
本设计调用了Xilinx官方IP:Tri Mode Ethernet MAC,其在代码中的位置如下:
可以看到其中泰处于被锁定状态,这是我们故意为之,目的是根据不同的PHY延时参数而修改其内部代码和内部时序约束代码,由于本设计使用的网络PHY为RTL8211,所以这里重点介绍使用RTL8211时,Tri Mode Ethernet MAC的修改和移植事项,当你需要工程移植,或者你的vivado版本与我的不一致时,Tri Mode Ethernet MAC都需要在vivado中进行升级,但由于该IP已被我们人为锁定,所以升级和修改需要一些高端操作,关于操作方法,我专门写了一篇文档,已附在资料包里,如下:
RTL8211
本设计开发板使用的网络PHY为RTL8211,工作在延时模式下,原理图引出了MDIO,但代码中不需要MDIO配置,通过上下拉电阻即可使RTL8211工作于延时模式,该PHY最高支持千兆,且能在10M/100M/1000M之间自动协商,但本设计在Tri Mode Ethernet MAC端固定为1000M;在资料包中,我们提供RTL8211的原理图;
QT上位机和源码
我们提供和UDP通信协议相匹配的QT抓图显示上位机及其源代码,目录如下:
我们的QT目前仅支持1280x720分辨率的视频抓图显示,但同时预留了1080P接口,对QT开发感兴趣的朋友可以尝试修改代码以适应1080P,因为QT在这里只是验证工具,不是本工程的重点,所以不再过多赘述,详情请参考资料包的QT源码,位置如下:
4、vivado工程1–>1路SFP传输
开发板FPGA型号:Xilinx–Artix7–xc7a35tfgg484-2;
开发环境:Vivado2019.1;
输入:ov5640摄像头或者动态彩条,分辨率1280x720@60Hz;
输出:SFP光口/RJ45网口;
网络PHY:RTL8211,延时模式;
应用:FPGA GTP+UDP架构,高速接口以太网视频传输,1路SFP光口;
工程Block Design如下:
工程代码架构如下:
工程的资源消耗和功耗如下:
5、vivado工程2–>2路SFP传输
开发板FPGA型号:Xilinx–Artix7–xc7a35tfgg484-2;
开发环境:Vivado2019.1;
输入:ov5640摄像头或者动态彩条,分辨率1280x720@60Hz;
输出:SFP光口/RJ45网口;
网络PHY:RTL8211,延时模式;
应用:FPGA GTP+UDP架构,高速接口以太网视频传输,2路SFP光口;
工程Block Design、工程代码架构、工程的资源消耗和第4章节的“vivado工程1–>1路SFP传输”一致;
6、工程移植说明
vivado版本不一致处理
1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;
2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件–>另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;
3:如果你的vivado版本高于本工程vivado版本,解决如下:
打开工程后会发现IP都被锁住了,如下:
此时需要升级IP,操作如下:
FPGA型号不一致处理
如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:
更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;
其他注意事项
1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;
2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;
3:纯FPGA移植到Zynq需要在工程中添加zynq软核;
7、上板调试验证并演示
准备工作
需要准备以下物品:
1:FPGA开发板;
2:OV5640摄像头,没有则选择代码里的动态彩条;
3:光模块和光纤;
4:网线;
5:上位机电脑,台式或笔记本;
工程1:1路SFP传输的光纤接法如下:
工程2:2路SFP传输的光纤接法如下:
网口连接如下:
然后将你的电脑IP地址改为和代码里规定的IP一致,当然,代码里的IP是可以任意设置的,但代码里的IP修改后,电脑端的IP也要跟着改,我的设置如下:
ping一下
在开始测试前,我们先ping一下,测试UDP是否连通,如下:
静态演示
ov5640摄像头1280x720输入UDP网络传输QT上位机显示如下:
动态彩条1280x720输入UDP网络传输QT上位机显示如下:
动态演示
动态视频演示如下:
FPGA-GTP-UDP-OV5640
8、福利:工程源码获取
福利:工程代码的获取
代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:私,或者文章末尾的V名片。
网盘资料如下:
相关文章:

FPGA高端项目:图像采集+GTP+UDP架构,高速接口以太网视频传输,提供2套工程源码加QT上位机源码和技术支持
目录 1、前言免责声明本项目特点 2、相关方案推荐我这里已有的 GT 高速接口解决方案我这里已有的以太网方案 3、设计思路框架设计框图视频源选择OV5640摄像头配置及采集动态彩条视频数据组包GTP 全网最细解读GTP 基本结构GTP 发送和接收处理流程GTP 的参考时钟GTP 发送接口GTP …...

数据库系统原理与实践 笔记 #7
文章目录 数据库系统原理与实践 笔记 #7数据库设计和E-R模型(续)转换为关系模式具有简单属性的实体集的表示复合属性多值属性联系集的表示模式的冗余—合并 实体-联系设计问题设计问题联系属性的布局 扩展的E-R特性特化概化属性继承特化/概化的设计约束聚集E-R图表示方法总结E-…...

【CesiumJS】(1)Hello world
介绍 Cesium 起源于2011年,初衷是航空软件公司(Analytical Graphics, Inc.)的一个团队要制作世界上最准确、性能最高且具有时间动态性的虚拟地球。取名"Cesium"是因为元素铯Cesium让原子钟非常准确(1967年,人们依据铯原子的振动而对…...

Docker 学习路线 5:在 Docker 中实现数据持久化
Docker 可以运行隔离的容器,包括应用程序和其依赖项,与主机操作系统分离。默认情况下,容器是临时的,这意味着容器中存储的任何数据在终止后都将丢失。为了解决这个问题并在容器生命周期内保留数据,Docker 提供了各种数…...

linux下使用vscode对C++项目进行编译
项目的目录结构 头文件swap.h 在自定义的头文件中写函数的声明。 // 函数的声明 void swap(int a,int b);swap.cpp 导入函数的声明,写函数的定义 #include "swap.h" // 双引号表示自定义的头文件 #include <iostream> using namespace std;// 函…...

LangChain+LLM实战---ChatGPT的即时插件套件制作
英文原文:Instant Plugins for ChatGPT: Introducing the Wolfram ChatGPT Plugin Kit 在一分钟内构建一个新插件 几周前,我们与OpenAI合作发布了Wolfram插件,使ChatGPT可以使用Wolfram语言和Wolfram|Alpha作为工具,在ChatGPT内部…...

包装印刷行业万界星空科技云MES解决方案
印刷业的机械化程度在国内制造行业内算是比较高的,不算是劳动密集型企业。如书本的装订、包装的模切、烫金、糊盒等都已经有了全自动设备。印刷厂除了部分手工必须采用人工外,大部分都可以采用机器,也就意味着可以由少量工人生产出大量产品。…...

Python教程---计算机语言简介
1.计算机编程语言的发展历程 计算机语言发展经历了三个阶段: 机器语言 - 机器语言通过二进制编码来编写程序,打孔织带机。 - 执行效率好,编写起来太麻烦 符号语言(汇编) - 使用符号来代替机器码 - 编写程序时…...

rhcsa-文件内容显示
浏览普通文件内容 浏览文件的命令 命令常用选项说明cat -n 对输出内容中的所有行标注行号 -b 对输出内容中的非空行标注行号 查看文件的内容head-num 指定需要显示文件num行的内容默认查看文前十行的内容tail -num 指定需要显示文件num行的内容 -f 使tail不停的去读取显示文…...

宠物养成猫狗商城门店问诊档案流量主小程序开发
宠物养成猫狗商城门店问诊档案流量主小程序开发 猫狗宠物养成商城门店问诊档案流量主小程序开发,这是一个充满趣味性和创新性的项目。通过将宠物养成游戏与商城、问诊服务、社交功能等相结合,为用户提供一站式的宠物养育体验。 在宠物养成方面&#x…...

应用安全四十二:SSO安全
一、什么是SSO SSO是单点登录(Single Sign On)的缩写,是指在多个应用系统中,用户只需要登录一次就可以访问所有相互信任的应用系统。这种方式减少了由登录产生的时间消耗,辅助了用户管理,是比较流行的企业业务整合的解决方案之一。 身份验证过程依赖于双方之间的信任关…...

【行云流水线实践】基于“OneBuild”方法对镜像进行快速装箱 | 京东云技术团队
在云原生领域,无论使用哪种编排调度平台,Kubernetes,DockerSwarm,OpenShift等,业务都需要基于镜像进行交付,我们在内部实践“Source-to-image”和链式构建,总而总结出“OneBuild”模式。 其核心…...

软件开发必备神器!一文读懂10款热门看板工具推荐!
看板(Kanban)是一种流行的框架,用于实施敏捷和DevOps软件开发。它要求实时沟通每个人的能力,并全面透明地展示正在进行的工作。工作项目在看板上以可视化方式表示,使项目经理和所有团队成员可以随时查看每个工作的状态…...

怎样提取视频提取的人声或伴奏?
有些小伙伴们进行音视频创作时,可能会需要提取音频的人声或者是伴奏。这里给大家推荐一个音分轨人声分离软件,支持一键提取音频人声和一键提取伴奏功能,可批量导入文件同步提取,简单高效,是音视频创作者的不二选择&…...

SpringBoot概述
SpringBoot是Spring提供的一个子项目,用于快速构建Spring应用程序。 SpringFramework:核心功能SpringData:数据获取SpringSecurity:认证授权SpringAMQP:消息传递SpringCloud:服务治理 SpringBoot新特性&…...

深度学习框架TensorFlow.NET环境搭建1(C#)
测试环境 visual studio 2017 window10 64位 测试步骤如下: 1 新建.net framework控制台项目,工程名称为TensorFlowNetDemo,.net framework的版本选4.7.2,如下图: 2 分别安装TensorFlow.NET包(先装)和SciSharp.…...

Git客户端软件 Tower mac中文版特点说明
Tower mac是一款Mac OS X系统上的Git客户端软件,它提供了丰富的功能和工具,帮助用户更加方便地管理和使用Git版本控制系统。 Tower mac软件特点 1. 界面友好:Tower的界面友好,使用户能够轻松地掌握软件的使用方法。 2. 多种Git操…...

详解IPD需求分析工具$APPEALS
够让企业生存下去的是客户,所以,众多企业提出要“以客户为中心”,那如何做到以客户为中心?IPD中给出的答案是需求管理。 需求管理流程,是IPD(集成管理开发)体系中的四大支撑流程之一࿰…...

318. 最大单词长度乘积
这道题求没有重复字母的两个字符串的最大长度乘积 重点在于怎么判断两个字符串没有重复字母 题目中只有小写字母,最多26个,于是想到使用26位二进制数来代表每一个字符串 有哪个字母就在对应位置设1 这个转换使用的是num | 1 << (c-a); 对字符串中的…...

.NET Core 中插件式开发实现
在 .NET Framework 中,通过AppDomain实现动态加载和卸载程序集的效果;但是.NET Core 仅支持单个默认应用域,那么在.NET Core中如何实现【插件式】开发呢? 一、.NET Core 中 AssemblyLoadContext的使用 1、AssemblyLoadContext简…...

并查集模版以及两道例题
💯 博客内容:并查集 😀 作 者:陈大大陈 🚀 个人简介:一个正在努力学技术的准C后端工程师,专注基础和实战分享 ,欢迎私信! 💖 欢迎大家:这里是C…...

英飞凌TLF35584规格书中文
官网: 英飞凌TLF35584QVVS2 TLF35584_SPI: 1 Overview2 Block Diagram3 Pin Configuration3.1 Pin Assignment - PG-VQFN-48 4 General Product Characteristics4.1 Absolute Maximum Ratings 绝对最大额定值4.2 Functional Range4.3 Thermal Resistance…...

【教3妹学编程-算法题】最大单词长度乘积
3妹:哇,今天好冷啊, 不想上班。 2哥:今天气温比昨天低8度,3妹要空厚一点啊。 3妹 : 嗯, 赶紧把我的羽绒服找出来穿上! 2哥:哈哈,那倒还不至于, 不过气温骤降&…...

遇到python程序是通过sh文件启动的,如何调试
说明 下载的源码总会遇到这样启动的: 并且发现shell文件内容很多,比较复杂,比如: 解决方案 这时候想要调试,可以通过端口连接的方式调试,具体方法如下: 在vscode调试按钮中添加远程附加调试…...

应用系统集成-Spring Integration
应用系统集成-Spring Integration 图1 EIP 消息系统模式全景图。 Spring Integration 是系统集成的一个实现框架,提供了对EIP核心概念:Endpoint、Message、Channel、Router、Translator的抽象及相关框架实现,使得基于Spring Integration进行…...

亚马逊与TEMU平台欧代英代如何注册?注册欧代/英代流程及注意事项
亚马逊与TEMU平台欧代英代如何注册?注册欧代/英代流程及注意事项 亚马逊平台的商家的产品,由于受到欧盟商品安全新法规市场监管法规欧盟要求所有标有CE标志的商品,都要拥有欧盟境内的欧代作为商品合规的联系方式(也称为负责人)。由于英国脱离…...

【嵌入式开发工具】STM32+Keil实现软件工程搭建与开发调试
本篇文章介绍了使用Keil来对STM32F103C8芯片进行初始工程搭建,以及开发与工程调试的完整过程,帮助读者能够在实战中体会到Keil这个开发环境的使用方法,了解一个嵌入式工程从无到有的过程,并且具备快速搭建一个全新芯片对应最小软件…...

python 去除图像中的框
最近在做图像标注,会出现以下的图片,需要去除其中的边框。 1.思路 人工标注画框的范围P,并使用标注工具在画框上画一个点A。获取点A的坐标和颜色。在范围P内,将与点A颜色相似的每一个点x的颜色,替换为点x上下&#…...

企业邀约媒体的方式方法?-(快速精准)
传媒如春雨,润物细无声,大家好,我是51媒体网胡老师。 快速而精确地邀约媒体通常需要有计划和策略性的方法。以下是一些方法,可以帮助企业有效地邀请媒体: 1. 媒体列表构建:首先,建立一个精心筛…...

旅游业为什么要选择VR全景,VR全景在景区旅游上有哪些应用
引言: VR全景技术的引入为旅游业带来了一场变革。这项先进技术不仅提供了前所未有的互动体验,还为景区旅游文化注入了新的生机。 一.VR全景技术:革新旅游体验 1.什么是VR全景技术? VR全景技术是一种虚拟现实技术&am…...