当前位置: 首页 > news >正文

大数据毕业设计选题推荐-家具公司运营数据分析平台-Hadoop-Spark-Hive

作者主页:IT研究室✨
个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。
☑文末获取源码☑
精彩专栏推荐⬇⬇⬇
Java项目
Python项目
安卓项目
微信小程序项目

文章目录

  • 一、前言
  • 二、开发环境
  • 三、系统界面展示
  • 四、代码参考
  • 五、论文参考
  • 六、系统视频
  • 结语

一、前言

随着家具行业的快速发展,市场竞争日益激烈。为了在激烈的市场环境中保持优势地位,家具公司需要准确地了解其销售数据及市场趋势。然而,传统的数据监测方法往往无法满足现代家具公司的需求,因为它们通常需要大量的人工操作,且难以保证数据的准确性和及时性。因此,建立一个自动化的家具公司运营数据监测平台,以实现对销售数据的实时监测和深入分析,变得至关重要。

当前,一些家具公司已经尝试使用一些数据分析工具来监测其运营数据。然而,这些工具往往存在一些问题,如:
数据准确性不高:由于数据来源的多样性,不同的数据源可能产生不一致的数据,导致数据分析结果出现偏差。
数据及时性不足:现有工具往往无法实时更新数据,使得数据分析的结果无法反映市场趋势。
缺乏深入分析:现有的工具往往只能提供基础的数据统计,而无法进行深入的数据挖掘和分析,从而无法为决策提供有力的支持。
因此,建立一个集实时数据采集、数据清洗、数据挖掘和分析于一体的家具公司运营数据监测平台,仍然具有必要性和现实意义。

本课题的研究目的是建立一个家具公司运营数据监测平台,通过自动化采集、清洗和分析数据,提供实时、准确、深入的数据支持,以帮助家具公司更好地理解市场趋势、优化产品组合、提高销售业绩。具体来说,本课题将实现以下目标:
实现数据的自动化采集和清洗,提高数据的准确性和可靠性;
实现数据的实时更新和可视化,及时反映市场趋势和销售状况;
实现数据的深入挖掘和分析,为决策提供有力的支持;
提供一个友好的用户界面,方便用户进行数据查询和操作。

本课题的研究意义在于为家具公司提供一种准确、实时的数据监测和分析工具,从而帮助家具公司更好地理解市场趋势和消费者需求,优化产品组合和提高销售业绩。具体来说,本课题的意义包括:
提高决策的准确性和效率:通过实时数据监测和分析,家具公司可以更加准确地了解市场趋势和消费者需求,从而更加准确地制定产品策略和销售策略,提高决策的准确性和效率。
优化产品组合:通过对销售数据的深入分析,家具公司可以了解哪些产品受消费者欢迎,从而优化产品组合,提高公司的盈利能力。
提高销售额和利润率:通过实时数据监测和分析,家具公司可以及时发现市场上的商机并迅速采取行动,从而提高销售额和利润率。同时,通过深入的数据挖掘和分析,家具公司可以了解消费者的购买行为和偏好,开发出更符合消费者需求的产品和服务。
增强竞争力:通过建立运营数据监测平台,家具公司可以更好地了解市场趋势和消费者需求,优化产品组合和提高销售业绩,从而增强竞争力。同时,这种数据驱动的决策方式也可以提高公司的透明度和诚信度,增强公司的社会责任感和品牌形象。

二、开发环境

  • 大数据技术:Hadoop、Spark、Hive
  • 开发技术:Python、Django框架、Vue、Echarts、机器学习
  • 软件工具:Pycharm、DataGrip、Anaconda、VM虚拟机

三、系统界面展示

  • 基于大数据的家具公司运营数据分析平台界面展示:
    基于大数据的家具公司运营数据分析平台
    家具公司运营数据分析平台-月销售额统计
    家具公司运营数据分析平台-商品销售统计
    家具公司运营数据分析平台-年销售额走势图
    家具公司运营数据分析平台-销售统计

四、代码参考

  • 大数据项目实战代码参考:
class Crawler():def __init__(self):self.db = Mongo()self.cdb = DbClient()self.page = Noneself.session = Noneself.set_session()self.search_url_Queue = JoinableQueue()def set_session(self):s = requests.session()s.cookies.update(self.get_cookie())s.headers.update(HEADERS)self.session = sdef get_cookie(self): # 获取不为空的cookiewhile True:q = self.cdb.get_cookies(flag=1)if q==None:print('时间等待')time.sleep(10)continueelse:d = {}if q:self.user = q['user']cookies = q['cookies']for cookie in cookies:d[cookie.get('name')] = cookie.get('value')return ddef get_page(self, url):url =url#r = self.session.get(url, headers=HEADERS, cookies=self.get_cookie())r = self.session.get(url,timeout=(10, 15))if r.text.find('亲,小二正忙,滑动一下马上回来') > 0:print("cookie需要验证!!!")self.cdb.update_cookie_flag2(self.user)return Falseif r.text.find('请输入') > 0:print("Need Login!!!")self.cdb.update_cookie_flag0(self.user)return Falseself.page = r.textself.parse()time.sleep(4)return Truedef parse(self):pattern = re.compile(r'g_page_config = ({.*});')m = re.search(pattern, self.page)if not m:print('Cannot fount data in this page.')with open('log_page.txt', 'w') as f:f.write(self.page)return Falseg_page_config = json.loads(m.group(1))auctions = g_page_config['mods']['itemlist']['data']['auctions']for auction in auctions:try:simil_url_short = auction.get('i2iTags', {"samestyle": '/'}).get('samestyle', {"url", '/'}).get('url', '')except Exception as e:simil_url_short = ''d = {}d['keyword'] = KEYWORDd['t_link'] = 'https:'+auction.get('detail_url','/')d['title'] = auction.get('raw_title')d['price'] = auction.get('view_price')d['shop_name'] = auction.get('nick')d['sales_num'] = auction.get('view_sales','0').replace('人收货', '').replace('人付款','')d['simil_url_short'] = simil_url_shortd['flag'] = 0print(d.get('keyword'), d.get('title'),d.get('simil_url_short'))self.db.insert(d)def run_cry(self):while True:print('【{}实时展示需要-请求-的原商品-链接】', self.search_url_Queue.qsize())search_url = self.search_url_Queue.get()  # 获得搜寻数据print('Crawling page {}'.format(search_url))flag = self.get_page(url=search_url)self.search_url_Queue.task_done()def run(self):for i in range(1, 4):page = str(i * 44)url = 'https://s.taobao.com/search?q=' + KEYWORD + '&sort=sale-desc&s=' + pageprint('搜索的初始url', url)self.search_url_Queue.put(url)Thread_list = []for i in range(1):Tsearch_page = threading.Thread(target=self.run_cry, args=())Thread_list.append(Tsearch_page)for p in Thread_list:p.daemon = Truep.start()for all in [self.search_url_Queue, self.parse_data_search_shop_Queue, self.data_search_shop_Queue,self.parse_data_simil_shop_Queue, self.data_simil_shop_Queue,]:all.join()if __name__ == '__main__':import threadingfrom multiprocessing import JoinableQueueCrawler().run()

五、论文参考

  • 计算机毕业设计选题推荐-基于大数据的家具公司运营数据分析平台论文参考:
    计算机毕业设计选题推荐-基于大数据的家具公司运营数据分析平台论文参考

六、系统视频

基于大数据的家具公司运营数据分析平台项目视频:

大数据毕业设计选题推荐-家具公司运营数据分析-Hadoop

结语

大数据毕业设计选题推荐-家具公司运营数据分析平台-Hadoop-Spark-Hive
大家可以帮忙点赞、收藏、关注、评论啦~
源码获取:私信我

精彩专栏推荐⬇⬇⬇
Java项目
Python项目
安卓项目
微信小程序项目

相关文章:

大数据毕业设计选题推荐-家具公司运营数据分析平台-Hadoop-Spark-Hive

✨作者主页:IT研究室✨ 个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Python…...

【触想智能】工业显示器上市前的检测项目分享

工业显示器在上市前,需要做一项重要的工作,那就是工业显示器出厂前的产品可靠性检测。 工业显示器选择的测试项目相比商用端更为严格,常见的性能测试项目包括高温老化、防尘防水、电磁静电干扰、防摔防撞等,在工业级应用领域&…...

Vue使用epubjs电子书

npmjs: https://www.npmjs.com/package/epubjs 在线电子书转换器 安装: npm i epubjs 简单封装: src/hooks/ import Epub from "epubjs"; import type { Book, Rendition } from epubjs import type { BookOptions } from epubjs/types…...

python机器学习——决策树

决策树 # 模块导入 from sklearn.tree import ExtraTreeRegressor as ETR, DecisionTreeRegressor as DTRExtraTreeRegressor和DecisionTreeRegressor是scikit-learn库中的两种回归模型,用于拟合和预测连续型目标变量。 决策树是一种基于树结构的机器学习算法&…...

__attribute__((__used__)) 和 __attribute__((__section__(“*“ “*“)))的使用

见&#xff1a;haproxy代码 C语言注册函数和调用函数&#xff0c;便于模块化开发和编程。 #include <stdio.h>#ifdef __APPLE__ #define HA_SECTION(s) __attribute__((__section__("__DATA, " s))) #define HA_SECTION_START(s) __asm("…...

webgoat-(A1)SQL Injection

SQL Injection (intro) SQL 命令主要分为三类&#xff1a; 数据操作语言 &#xff08;DML&#xff09;DML 语句可用于请求记录 &#xff08;SELECT&#xff09;、添加记录 &#xff08;INSERT&#xff09;、删除记录 &#xff08;DELETE&#xff09; 和修改现有记录 &#xff…...

Flink的API分层、架构与组件原理、并行度、任务执行计划

Flink的API分层 Apache Flink的API分为四个层次&#xff0c;每个层次都提供不同的抽象和功能&#xff0c;以满足不同场景下的数据处理需求。下面是这四个层次的具体介绍&#xff1a; CEP API&#xff1a;Flink API 最底层的抽象为有状态实时流处理。其抽象实现是Process Functi…...

Transformer:开源机器学习项目,上千种预训练模型 | 开源日报 No.66

huggingface/transformers Stars: 113.5k License: Apache-2.0 这个项目是一个名为 Transformers 的开源机器学习项目&#xff0c;它提供了数千种预训练模型&#xff0c;用于在文本、视觉和音频等不同领域执行任务。该项目主要功能包括&#xff1a; 文本处理&#xff1a;支持…...

Corel VideoStudio 会声会影2024剪辑中间的视频怎么删 剪辑中音乐太长怎么办

我很喜欢视频剪辑软件Corel VideoStudio 会声会影2024&#xff0c;因为它使用起来很有趣。它很容易使用&#xff0c;但仍然给你很多功能和力量。视频剪辑软件Corel VideoStudio 会声会影2023让我与世界分享我的想法&#xff01;“这个产品的功能非常多&#xff0c;我几乎没有触…...

数据结构初阶---复杂度的OJ例题

复杂度的OJ例题 一、消失的数字1.思路一2.思路二3.思路三 二、旋转数组1.思路一2.思路二3.思路三 一、消失的数字 数组nums包含从0到n的所有整数&#xff0c;但其中缺了一个。请编写代码找出那个缺失的整数。你有办法在O(N)时间内完成吗&#xff1f; 链接&#xff1a;力扣&…...

Prometheus|云原生|grafana的admin用户密码重置备忘记录

很久很久以前部署的一个Prometheus套装里的grafana密码给忘记了&#xff0c;回忆总是很痛苦&#xff0c;因此还是在这里简单的记录一下&#xff0c;下次就不需要满世界反翻找了。 一&#xff0c; 改库重置密码为admin grafana密码存放在哪里的&#xff1f; 必须说明一下&am…...

[hive]中的字段的数据类型有哪些

Hive中提供了多种数据类型用于定义表的字段。以下是Hive中常见的数据类型&#xff1a; 布尔类型&#xff08;Boolean&#xff09;&#xff1a;用于表示true或false。 字符串类型&#xff08;String&#xff09;&#xff1a;用于表示文本字符串。 整数类型&#xff08;Intege…...

第六章 树【数据结构和算法】【精致版】

第六章 树【数据结构和算法】【精致版】 前言版权第六章 树6.1 应用实例6.2 树的概念6.2.1树的定义与表示6.2.2 树的基本术语6.2.3树的抽象数据类型定义 6.3 二叉树6.3.1二叉树的定义6.3.2 二叉树的性质6.3.3 二叉树的存储 6.4 二叉树的遍历6.4.1 二叉树的遍历及递归实现**1-二…...

第九章:Dynamic Symbolic Execution

文章目录 Dynamic Symbolic Executionoverviewmotivationdynamic symbolic execution常用的其他技术对比Random Testingsymbolic executionCombined static and symbolic - Dynamic Execution (DSE)step1: 初始化两个具体的值 x,ystep2: 根据定义得出 z 的 concrete value 和 s…...

在搜索引擎中屏蔽csdn

csdn是一个很好的技术博客&#xff0c;里面信息很丰富&#xff0c;我也喜欢在csdn上做技术笔记。 但是CSDN体量太大&#xff0c;文章质量良莠不齐。当在搜索引擎搜索技术问题时&#xff0c;搜索结果中CSDN的内容占比太多&#xff0c;导致难以从其他优秀的博客平台中获取信息。因…...

Linux开发工具的使用(vim、gcc/g++ 、make/makefile)

文章目录 一 &#xff1a;vim1:vim基本概念2:vim的常用三种模式3:vim三种模式的相互转换4:vim命令模式下的命令集- 移动光标-删除文字-剪切/删除-复制-替换-撤销和恢复-跳转至指定行 5:vim底行模式下的命令集 二:gcc/g1:gcc/g的作用2:gcc/g的语法3:预处理4:编译5:汇编6:链接7:函…...

MySQL(10):创建和管理表

基础知识 在 MySQL 中&#xff0c;一个完整的数据存储过程总共有 4 步&#xff0c;分别是&#xff1a;创建数据库、确认字段、创建数据表、插入数据。 要先创建一个数据库&#xff0c;而不是直接创建数据表&#xff1a;从系统架构的层次上看&#xff0c;MySQL 数据库系统从大到…...

Python赋值给另一个变量且不改变原变量

Python赋值给另一个变量且不改变原变量 在Python中&#xff0c;如果你想将一个变量的值赋给另一个变量&#xff0c;同时保持原变量不变&#xff0c;你可以使用复制&#xff08;copy&#xff09;而不是引用&#xff08;reference&#xff09;。Python中的变量通常是通过引用&…...

PHP进销存ERP系统源码

PHP进销存ERP系统源码 系统介绍&#xff1a; 扫描入库库存预警仓库管理商品管理供应商管理。 1、电脑端手机端&#xff0c;手机实时共享&#xff0c;手机端一目了然。 2、多商户Saas营销版 无限开商户&#xff0c;用户前端自行注册&#xff0c;后台管理员审核开通 3、管理…...

npm i 报错:Cannot read properties of null (reading ‘refs‘)

问题: 旧项目要更改东西&#xff0c;重新部署上线的时候&#xff0c;发现页面显示有异常。当时在开发环境是没有问题的。后经排查是一个引入swiper的页面报错了&#xff0c;只要注释掉swiper插件&#xff0c;就没问题了&#xff0c;但这肯定是不行的。 原因&#xff1a; npm和…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序

一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

三分算法与DeepSeek辅助证明是单峰函数

前置 单峰函数有唯一的最大值&#xff0c;最大值左侧的数值严格单调递增&#xff0c;最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值&#xff0c;最小值左侧的数值严格单调递减&#xff0c;最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...