当前位置: 首页 > news >正文

大数据毕业设计选题推荐-无线网络大数据平台-Hadoop-Spark-Hive

作者主页:IT毕设梦工厂✨
个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。
☑文末获取源码☑
精彩专栏推荐⬇⬇⬇
Java项目
Python项目
安卓项目
微信小程序项目

文章目录

  • 一、前言
  • 二、开发环境
  • 三、系统界面展示
  • 四、部分代码设计
  • 五、论文参考
  • 六、系统视频
  • 结语

一、前言

随着无线通信技术的快速发展和广泛应用,无线网络已经成为了现代社会信息交流的重要基础设施。为了满足日益增长的网络需求,提高无线网络的覆盖范围和服务质量变得尤为重要。然而,这需要解决许多技术挑战,其中之一就是如何规划、设计、维护和优化无线网络。

在当前的无线网络大数据平台中,存在一些问题和挑战。首先,网络规划数据不准确,无法满足实际需求。其次,网络设计数据不完整,无法了解在网分布系统和直放站现状。此外,缺乏无线网络大数据采集终端监控点,导致网络维护和优化数据不充分,无法准确评估网络性能和问题。

因此,本课题旨在研究一种新型的无线网络大数据平台,以解决上述问题。通过该平台,可以实现对无线网络数据的采集、分析和处理,从而为网络规划、设计、维护和优化提供强有力的支持。本课题的研究成果将有助于提高无线网络的覆盖范围和服务质量,具有重要的理论意义和实践价值。

目前,针对无线网络大数据平台的问题,虽然有一些现有的解决方案,但它们都存在一些问题。
首先,网络规划数据不准确。目前的网络规划方法主要依靠人工经验和一些简单的工具软件进行,无法考虑所有因素和情况,也无法实时更新数据。这导致规划结果往往与实际情况存在较大偏差,不能满足实际需求。
其次,网络设计数据不完整。在现有的系统中,对在网分布系统和直放站现状的记录往往不,无法准确反映实际情况。这使得网络设计存在盲区,可能导致一些潜在的问题无法被及时发现和处理。
此外,缺乏无线网络大数据采集终端监控点。现有的系统往往没有足够的数据采集点,无法收集网络维护和优化所需的数据。这使得网络维护和优化工作缺乏充分的数据支持,难以准确评估网络性能和问题。

本课题的研究目的是开发一种新型的无线网络大数据平台,以解决现有解决方案存在的问题。具体来说,该平台将实现以下功能:

实现对无线网络数据的采集和实时更新,包括网络规划数据、网络设计数据、无线网络大数据采集终端监控点数据等。
利用先进的数据分析和处理技术,对采集到的数据进行处理和分析,以发现潜在的问题和趋势,为网络规划、设计、维护和优化提供支持。
提供一个友好的用户界面,使用户可以方便地查看和分析数据,并生成相应的报告和建议。

本课题的研究成果将具有重要的理论意义和实践价值。首先,它将为无线网络规划、设计、维护和优化提供强有力的支持,有助于提高无线网络的覆盖范围和服务质量。其次,它将增进无线通信技术的发展和应用,推动信息社会的进步和发展。此外,本课题的研究还将为相关领域的研究提供新的思路和方法,推动相关领域的发展和创新。

二、开发环境

  • 大数据技术:Hadoop、Spark、Hive
  • 开发技术:Python、Django框架、Vue、Echarts、机器学习
  • 软件工具:Pycharm、DataGrip、Anaconda、VM虚拟机

三、系统界面展示

  • 无线网络大数据平台界面展示:
    无线网络大数据平台
    无线网络大数据平台
    无线网络大数据平台
    无线网络大数据平台
    无线网络大数据平台
    无线网络大数据平台

四、部分代码设计

  • 无线网络大数据平台项目实战-代码参考:
class Scheduler(object):def __init__(self, mongodb_server, mongodb_port, mongodb_db, persist, queue_key, queue_order):self.mongodb_server = mongodb_serverself.mongodb_port = mongodb_portself.mongodb_db = mongodb_dbself.queue_key = queue_keyself.persist = persistself.queue_order = queue_orderdef __len__(self):return self.client.size()@classmethoddef from_crawler(cls, crawler):settings = crawler.settingsmongodb_server = settings.get('MONGODB_QUEUE_SERVER', 'localhost')mongodb_port = settings.get('MONGODB_QUEUE_PORT', 27017)mongodb_db = settings.get('MONGODB_QUEUE_DB', 'scrapy')persist = settings.get('MONGODB_QUEUE_PERSIST', True)queue_key = settings.get('MONGODB_QUEUE_NAME', None)queue_type = settings.get('MONGODB_QUEUE_TYPE', 'FIFO')if queue_type not in ('FIFO', 'LIFO'):raise Error('MONGODB_QUEUE_TYPE must be FIFO (default) or LIFO')if queue_type == 'LIFO':queue_order = -1else:queue_order = 1return cls(mongodb_server, mongodb_port, mongodb_db, persist, queue_key, queue_order)def open(self, spider):self.spider = spiderif self.queue_key is None:self.queue_key = "%s_queue"%spider.nameconnection = pymongo.Connection(self.mongodb_server, self.mongodb_port)self.db = connection[self.mongodb_db]self.collection = self.db[self.queue_key]# notice if there are requests already in the queuesize = self.collection.count()if size > 0:spider.log("Resuming crawl (%d requests scheduled)" % size)def close(self, reason):if not self.persist:self.collection.drop()def enqueue_request(self, request):data = request_to_dict(request, self.spider)self.collection.insert({'data': data,'created': datetime.datetime.utcnow()})def next_request(self):entry = self.collection.find_and_modify(sort={"$natural":self.queue_order}, remove=True)if entry:request = request_from_dict(entry['data'], self.spider)return requestreturn Nonedef has_pending_requests(self):return self.collection.count() > 0
class DoubanPipeline(object):def __init__(self):self.server = settings['MONGODB_SERVER']self.port = settings['MONGODB_PORT']self.db = settings['MONGODB_DB']self.col = settings['MONGODB_COLLECTION']connection = pymongo.Connection(self.server, self.port)db = connection[self.db]self.collection = db[self.col]def process_item(self, item, spider):self.collection.insert(dict(item))log.msg('Item written to MongoDB database %s/%s' % (self.db, self.col),level=log.DEBUG, spider=spider)return item

五、论文参考

  • 计算机毕业设计选题推荐-无线网络大数据平台-论文参考:
    计算机毕业设计选题推荐-无线网络大数据平台-论文参考

六、系统视频

无线网络大数据平台-项目视频:

大数据毕业设计选题推荐-无线网络大数据平台-Hadoop

结语

大数据毕业设计选题推荐-无线网络大数据平台-Hadoop-Spark-Hive
大家可以帮忙点赞、收藏、关注、评论啦~
源码获取:私信我

精彩专栏推荐⬇⬇⬇
Java项目
Python项目
安卓项目
微信小程序项目

相关文章:

大数据毕业设计选题推荐-无线网络大数据平台-Hadoop-Spark-Hive

✨作者主页:IT毕设梦工厂✨ 个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Py…...

【jvm】虚拟机之本地方法接口与本地方法库

目录 一、本地方法1.1 说明1.2 代码示例1.3 为什么要使用native method 二、现状 一、本地方法 1.1 说明 1.一个Native Method就是一个Java调用非Java代码的接口。 2.一个Native Method是这样一个Java方法:该方法的实现由非Java语言实现,比如C。 3.这个…...

HDFS系统操作命令大全

一,前言 HDFS作为分布式存储的文件系统,有其对数据的路径表达方式 HDFS同linux系统一样,均是以/作为根目录的组织形式 linux:/usr/local/hello.txt HDFS:/usr/local/hello.txt 二,如何区分呢? L…...

雷尼绍探头编程 9810

9810 ​ 安全移动 使用参数 参数含义#9移动速度 F#117移动速度 F#148#24X 移动 终点绝对坐标#25Y 移动 终点绝对坐标#26Z 移动 终点绝对坐标#123机床移动到终点的绝对坐标 与 终点的理论值 的 差#5041当前绝对坐标 X 值#5042当前绝对坐标 Y 值#5043当前绝对坐标 Z 值#116刀具…...

el-table 列分页

<template><div><el-table:data"tableData":key"tampTime"style"width: 100%"><el-table-columnprop"name"label"姓名"width"180"></el-table-column><el-table-columnprop&quo…...

APP攻防--ADB基础

进入app包 先使用 adb devices查看链接状态 手机连接成功的 adb shell 获取到手机的一个shell 此时想进入app包时没有权限的&#xff0c;APP包一般在data/data/下。没有执行权限&#xff0c;如图 Permission denied 权限被拒绝 此时需要手机root&#xff0c;root后输入 su …...

【Linux】第十站:git和gdb的基本使用

文章目录 一、git的基本操作1.gitee新建仓库注意事项2.git的安装3.git的克隆4.git的add5.git的commit6.git的push7.git log8.git status9. .gitignore 二、Linux调试器---gdb1.背景2.gdb安装、进入与退出3.list/l4.r/run运行程序5. break/b 打断点6.info/i b 查看断点7.delete/…...

Single Image Haze Removal Using Dark Channel Prior(暗通道先验)

去雾算法都会依赖于很强的先验以及假设&#xff0c;并结合相应的物理模型&#xff0c;完成去雾过程。本文作者何凯明及其团队通过大量的无雾图像和有雾图像&#xff0c;归纳总结出无雾图像在其对应的暗通道图像上具有极低的强度值&#xff08;趋近于0&#xff09;&#xff0c;并…...

力扣382.链表随机节点(java利用数组随机返回节点值)

Problem: 382. 链表随机节点 文章目录 思路解题方法复杂度Code 思路 注意链表与数组的特性&#xff0c;对于随机访问读取的操作利用数组可以较方便实现&#xff0c;所以我们可以将链表中的节点值先存入到数组中最后再取出随机生成节点位置的值。 解题方法 1.生成List集合与Rand…...

在jupyter中使用R

如果想在Jupyter Notebook中使用R语言&#xff0c;以下几个步骤操作可行&#xff1a; 1、启动Anaconda Prompt 2、进入R的安装位置&#xff0c;切换到R的安装位置&#xff1a;D:\Program Files\R\R-3.4.3\bin&#xff0c;启动R&#xff0c;具体代码操作步骤如下&#xff0c;在…...

2023(第四届)江西开放数据创新应用大赛等你来挑战!

邀请函 这是一个友好的邀请。无论你是数据领域的专家、学生还是爱好者&#xff0c;我们都欢迎你加入这个平台。这不仅仅是一场比赛&#xff0c;更是一个交流、学习和展示自己的机会。 丰厚奖金&#xff1a;我们为参赛者准备了总计15W的奖金池&#xff0c;期待你的才华在这里得…...

2023-mac rz sz 安装

之前安装过一次&#xff0c;没问题&#xff0c;这次按照之前教程装了就不管上传下载都会卡住&#xff1b; step1: brew install lrzsz step2&#xff1a;在/usr/local/bin 路径下配置两个sh,之前从网上找到的直接用都不对&#xff0c;下面这个是调试过的正式可用的 iterm2…...

使用Matplotlib绘画3D图时运行不出结果,也不报错,图片是空白 !!

1.问题&#xff1a; 我使用如下代码运用matplotlib中的Axes3D绘画3D图&#xff0c;但是运行出来的结果是空白。 import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D #导入3D包 fig plt.figure() #窗口 #ax Axes3D(fig) # X, Y …...

Matlab函数——find

介绍 当你需要返回某个数组中符合指定条件的所有元素的索引时&#xff0c;可以使用 MATLAB 中的 find 函数。 find 函数语法&#xff1a; indices find(X) indices find(X, k) indices find(X, k, first) indices find(X, k, last) 其中&#xff0c;X 是一个数组&#xf…...

mac安装python3

文章目录 1. 安装1.1 brew安装&#xff08;失败&#xff09;2. 下载安装包 2. 查看版本3. 配置 1. 安装 1.1 brew安装&#xff08;失败&#xff09; brew install python3下载完成后报错&#xff1a;Error: python3.10: unknown or unsupported macOS version: :dunno 解决&a…...

【星海出品】VUE(一)

Windows安装nvm控制器 Windows里找都PowerShell。右击点击管理员运行。 1.安装choco Set-ExecutionPolicy Bypass -Scope Process -Force; iex ((New-Object System.Net.WebClient).DownloadString(https://chocolatey.org/install.ps1))2.安装NVM choco install nvm 3.查看可…...

Stable Diffusion 的提示词使用技巧

推荐Stable Diffusion自动纹理工具&#xff1a; DreamTexture.js自动纹理化开发包 什么是提示语&#xff1f; 提示语是人工智能中的一个重要组成部分&#xff0c;尤其是自然语言处理 &#xff08;NLP&#xff09;。在AI自人工智能中&#xff0c;想要获得好的效果&#xff0c;简…...

Hook函数

在嵌入式系统中&#xff0c;hook函数&#xff08;也被称为钩子函数&#xff09;是一种特殊类型的函数&#xff0c;它会在特定的事件发生时被操作系统内部调用。例如&#xff0c;在实时操作系统&#xff08;RTOS&#xff09;中&#xff0c;如果删除了一个任务&#xff0c;就会调…...

USB简介系列-01

文章目录 USB简介一、电气USB简介 通用串行总线(USB)是由Compaq,Intel,Microsoft和NEC开发的规范,后来惠普,朗讯和飞利浦加入。这些公司成立了 USB Implementers Forum, Inc 作为一家非营利性公司,以发布规范并组织 USB 的进一步开发。 USB-IF的目的是为当时使用的PC…...

算法小白的心得笔记:比较小数点后五位,而不会受到浮点数精度问题的影响。

epsilon 来比较浮点数 double epsilon 1e-6; // for 6 decimal places for (const auto &ratio : colorRatio) {std::cout << "__" << inum << "__" << ratio << " ";if ((inum - 1) % 10 0){std::cout &l…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

React Native 开发环境搭建(全平台详解)

React Native 开发环境搭建&#xff08;全平台详解&#xff09; 在开始使用 React Native 开发移动应用之前&#xff0c;正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南&#xff0c;涵盖 macOS 和 Windows 平台的配置步骤&#xff0c;如何在 Android 和 iOS…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

OpenLayers 分屏对比(地图联动)

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能&#xff0c;和卷帘图层不一样的是&#xff0c;分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...