深度学习框架TensorFlow.NET之数据类型及张量2(C#)
环境搭建参考:
深度学习框架TensorFlow.NET环境搭建1(C#)-CSDN博客
由于本文作者水平有限,如有写得不对的地方,往指出
声明变量:tf.Variable
声明常量:tf.constant
下面通过代码的方式进行学习
一 数据类型学习
1.1 数据类型输出及运算(包括变量及常量的声明及操作)
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using static Tensorflow.Binding;
using Tensorflow;namespace TensorFlowNetDemo
{class Program{static void Main(string[] args){ResourceVariable intVar = tf.Variable<int>(10, name: "int变量");ResourceVariable floatVar = tf.Variable<float>(1.2f, name: "float变量");//字符串的值不能出现中文,不然会报错ResourceVariable strVar = tf.Variable<string>("Hello World", name: "字符串变量");ResourceVariable boolVar = tf.Variable<bool>(false, name: "bool变量");Tensor number1 = tf.constant(2,name:"常量2名称");Tensor number2 = tf.constant(3,name:"常量2名称");Tensor addResult = tf.add(number1, number2);Tensor addResult2= tf.add(intVar, number1);Tensor addResult3 = tf.add(intVar.numpy(), number1); //int类型和int类型相加正常//Tensor addResult4 = tf.add(floatVar, number1); float类型和int类型相加会报错Console.WriteLine("intVar数值为:" + intVar.numpy()+ " 变量名为:"+intVar.Name);Console.WriteLine("floatVar数值为:" + floatVar.numpy() + " 变量名为:" + floatVar.Name);Console.WriteLine("strVar数值为:" + strVar.numpy() + " 变量名为:" + strVar.Name);Console.WriteLine("boolVar数值为:" + boolVar.numpy() + " 变量名为:" + boolVar.Name);Console.WriteLine("addResult数值为:" + addResult.numpy());Console.WriteLine("addResult2数值为:" + addResult2.numpy());Console.WriteLine("addResult3数值为:" + addResult3.numpy());Console.Read();}}
}
通过tf.Variable<int>(10, name: "int变量")声明了一个值为10,名为'int变量'的整形变量
通过tf.Variable<string>("Hello World", name: "字符串变量")声明了一个值为Hello World,名为'字符串变量'的字符串变量,注意字符串的值不能出现中文,不然会报错
其它的数据类型的声明方式类似
通过tf.constant(2,name:"常量2名称")声明了一个值为2,名为'常量2名称'的整型常量
注意:tf.add相加函数,对应的两个参数的数据类型必须要保持一致,不然会报错。
如:tf.add(number1, number2)是对number1和number2的值相加,可以相加,都是int类型
tf.add(floatVar, number1)不能相加,因为floatVar是float类型,而number2是int类型
程序运行的结果如下图:

1.2 数据类型输入
代码如下:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using static Tensorflow.Binding;
using Tensorflow;namespace TensorFlowNetDemo
{class Program{static void Main(string[] args){ResourceVariable intVar = tf.Variable<int>(10, name: "int变量");ResourceVariable floatVar = tf.Variable<float>(1.2f, name: "float变量");//字符串的值不能出现中文,不然会报错ResourceVariable strVar = tf.Variable<string>("Hello World", name: "字符串变量");ResourceVariable boolVar = tf.Variable<bool>(false, name: "bool变量");Tensor number1 = tf.constant(2,name:"常量2名称");Tensor number2 = tf.constant(3,name:"常量2名称");Tensor addResult = tf.add(number1, number2);Tensor addResult2= tf.add(intVar, number1);Tensor addResult3 = tf.add(intVar.numpy(), number1); //int类型和int类型相加正常//Tensor addResult4 = tf.add(floatVar, number1); float类型和int类型相加会报错Console.WriteLine("intVar的数据类型为:" + intVar.dtype);Console.WriteLine("floatVar的数据类型为:" + floatVar.dtype);Console.WriteLine("strVar的数据类型为:" + strVar.dtype);Console.WriteLine("boolVar的数据类型为:" + boolVar.dtype);Console.WriteLine("addResult的数据类型为:" + addResult.dtype);//当然也可以使用print进行输出print("使用print函数输出intVar数值为:" + intVar.numpy() + " 变量名为:" + intVar.Name);Console.Read();}}
}
变量或者标量的dtype属性标识该变量或者标量的数据类型
程序运行结果如下:

1.3 声明二维数组变量
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using static Tensorflow.Binding;
using Tensorflow;namespace TensorFlowNetDemo
{class Program{static void Main(string[] args){//使用变量声明一维数组,2行4列的一维数组ResourceVariable array = tf.Variable(new[,] { { 1, 2, 3, 4 }, { 5, 6, 7, 8 } });Console.WriteLine("二维数组输出为:" + array.numpy());Console.WriteLine("二维数组的数据类型为:" + array.dtype);Console.Read();}}
}
代码中声明了一个2行4列的二维数组
代码运行结果如下:

1.4 形状输出
代码如下:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using static Tensorflow.Binding;
using Tensorflow;namespace TensorFlowNetDemo
{class Program{static void Main(string[] args){ResourceVariable intVar = tf.Variable<int>(10, name: "int变量");Tensor number1 = tf.constant(2, name: "常量2名称");Tensor number2 = tf.constant(3, name: "常量2名称");Tensor addResult = tf.add(number1, number2);//使用变量声明一维数组,2行4列的二维数组ResourceVariable array = tf.Variable(new[,] { { 1, 2, 3, 4 }, { 5, 6, 7, 8 } });//shape输出Console.WriteLine("intVar的shape输出:" + intVar.shape);Console.WriteLine("addResult的shape输出:" + intVar.shape);Console.WriteLine("二维数据的shape为:" + array.shape);Console.Read();}}
}
输出结果如下:

二 张量
TensorFlow中数据的基本单位为张量,前面例子中我们操作的变量或者常量都是属于张量的一种,我们可以使用张量表示标量(0维度数组)、向量(1维数组)、矩阵(2维数组)、RBG图像(3维数组)、视频(4维数组,多了时间维度)等n维数组
2.1 各个维度的张量表示方式
2.1.1 标量(0维数组)的张量表示如下:
ResourceVariable intVar = tf.Variable<int>(10, name: "int变量");
Tensor number1 = tf.constant(2, name: "常量2名称");
2.1.2 向量(1维的数组)的张量表示如下:
ResourceVariable var1 = tf.Variable(new[]{1,2,3});
Tensor var2 = tf.constant(new[] { 2,3,4 });
2.1.3 矩阵(2维数组)的张量表示如下:
ResourceVariable array = tf.Variable(new[,] { { 1, 2, 3, 4 }, { 5, 6, 7, 8 } });
2.1.4 RGB图像(3维数组)的张量表示如下:
ResourceVariable array1 = tf.Variable(new[,,] { { { 1, 2, 3, 4 }, { 5, 6, 7, 8 } } , {{ 11, 22, 33, 4 }, { 55, 66, 77, 88 } } });
4维度的就偷个懒,就不写了,类似
2.2 可以通过张量的shape属性获取张量形状、dtype属性获取张量数据类型,方法numpy获取张量的值,代码例子如下:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using static Tensorflow.Binding;
using Tensorflow;namespace TensorFlowNetDemo
{class Program{static void Main(string[] args){ResourceVariable intVar0 = tf.Variable<int>(10, name: "int变量");ResourceVariable array1 = tf.Variable(new[] { 1, 2, 3, 4 });//使用变量声明一维数组,2行4列的二维数组ResourceVariable array2 = tf.Variable(new[,] { { 1, 2, 3, 4 }, { 5, 6, 7, 8 } });ResourceVariable array3 = tf.Variable(new[,,] { { { 1, 2, 3, 4 }, { 5, 6, 7, 8 } } , {{ 11, 22, 33, 4 }, { 55, 66, 77, 88 } } });Console.WriteLine("0维张量的形状为:"+ intVar0.shape+" 数据类型为:"+ intVar0.dtype+" 值为:"+ intVar0.numpy());Console.WriteLine("1维张量的形状为:" + array1.shape + " 数据类型为:" + array1.dtype + " 值为:" + array1.numpy());Console.WriteLine("2维张量的形状为:" + array2.shape + " 数据类型为:" + array2.dtype + " 值为:" + array2.numpy());Console.WriteLine("3维张量的形状为:" + array3.shape + " 数据类型为:" + array3.dtype + " 值为:" + array3.numpy());Console.Read();}}
}
运行结果如下:

好了,本文内容到此结束
相关文章:
深度学习框架TensorFlow.NET之数据类型及张量2(C#)
环境搭建参考: 深度学习框架TensorFlow.NET环境搭建1(C#)-CSDN博客 由于本文作者水平有限,如有写得不对的地方,往指出 声明变量:tf.Variable 声明常量:tf.constant 下面通过代码的方式进行学…...
Pandas指定多列组合形成新列
目录 1、数据准备2、多列组合 1、数据准备 df pd.DataFrame({first_name: [A, B], last_name: [a, b]}) print(df.to_string()) first_name last_name 0 A a 1 B b 2、多列组合 2.1、方式一:使用cat() df[full_name] df[firs…...
硕鼠——视频下载利器
相信很多做自媒体、剪辑的同志们,经常会遇到一个棘手的问题:剪辑的素材从何而来。诸如很多高燃混剪的视频,往往需要多个影视作品中的原画来进行二次创作,可是这些视频素材从何而来呢? 有小伙伴们提出,通过录…...
Android 13.0 Launcher3 app图标长按去掉应用信息按钮
1.前言 在13.0的rom定制化开发中,在Launcher3定制化开发中,对Launcher3的定制化功能中,在Launcher3的app列表页会在长按时,弹出微件和应用信息两个按钮,点击对应的按钮跳转到相关的功能页面, 现在由于产品需求要求禁用应用信息,不让进入到应用信息页面所以要去掉应用信息…...
10 DETR 论文精读【论文精读】End-to-End Object Detection with Transformers
目录 DETR 这篇论文,大家为什么喜欢它?为什么大家说它是一个目标检测里的里程碑式的工作?而且为什么说它是一个全新的架构? 1 题目 2摘要 2.1新的任务定义:把这个目标检测这个任务直接看成是一个集合预测的问题 2.…...
高数笔记05:不定积分与定积分
图源:文心一言 时间比较紧张,仅导图~~🥝🥝 第1版:查资料、画导图~🧩🧩 参考资料:《高等数学 基础篇》武忠祥 🐳目录 🐳目录 🐳不定积分 &#…...
【代码随想录】算法训练计划13
1、347. 前 K 个高频元素 题目: 给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。你可以按 任意顺序 返回答案。 输入: nums [1,1,1,2,2,3], k 2 输出: [1,2] 思路: sort.Slice学习一下,其实还有so…...
Python图像处理之OpenCV模块
Python图像处理 1、OpenCV模块简介2、OpenCV模块图像常用操作3、PIL与OpenCV图像格式转换4、图像识别应用案例4.1、人脸识别4.2、车牌识别4.3、文本识别1、OpenCV模块简介 OpenCV(Open Source Computer Vision Library)是一个基于BSD许可(开源)发行的跨平台计算机视觉库,主…...
动态规划-丑数
** 描述 把只包含质因子2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14不是,因为它包含质因子7。 习惯上我们把1当做是第一个丑数。求按从小到大的顺序的第 n个丑数。 数据范围: 0≤n≤2000 要求&#x…...
【MogDB/openGauss的三种函数稳定性关键字】
一、ORACLE中的类似的函数稳定性关键字(DETERMINISTIC) 在ORACLE里,function有着一个DETERMINISTIC参数,它表示一个函数在输入不变的情况下输出是否确定,只要输入的参数一样,返回的结果一定一样的…...
java-对Integer.MAX_VALUE做加法
public static void main(String[] args) {int maxValue Integer.MAX_VALUE;System.out.println("maxValue1 " (maxValue1));System.out.println("maxValue2 " (maxValue2));System.out.println("maxValue3 " (maxValue3));}//结果 maxVa…...
【学习笔记】[COCI2018-2019#1] Teoretičar
首先,可以发现 C C C等于所有点度数的最大值,我们能用到的颜色数目为 2 x ≥ C 2^x\ge C 2x≥C。 考虑分治,将边集划分为 E E 1 E 2 EE_1E_2 EE1E2,使得 E 1 , E 2 E_1,E_2 E1,E2中点度数的最大值都不超过 2 x − 1 2^…...
64位Office API声明语句第112讲
跟我学VBA,我这里专注VBA, 授人以渔。我98年开始,从源码接触VBA已经20余年了,随着年龄的增长,越来越觉得有必要把这项技能传递给需要这项技术的职场人员。希望职场和数据打交道的朋友,都来学习VBA,利用VBA,起码可以提高…...
C++ day3作业
1> 思维导图 2> 自己封装一个矩形类(Rect),拥有私有属性:宽度(width)、高度(height), 定义公有成员函数: 初始化函数:void init(int w, int h) 更改宽度的函数:set_w(int w) 更改高度的函数:set_h(int h) 输出该矩形的周长和面积函数:void s…...
蓝桥杯官网填空题(方格计数)
题目描述 本题为填空题,只需要算出结果后,在代码中使用输出语句将所填结果输出即可。 如下图所示,在二维平面上有无数个 11 的小方格。 我们以某个小方格的一个顶点为圆心画一个半径为 50000 的圆。 你能计算出这个圆里有多少个完整的小方…...
【系统架构设计】计算机公共基础知识: 6 知识产权与标准化
一 知识产权 1 保护对象和范围 法律法规名称保护对象及范围注意事项著作权法著作权 文学、绘画、摄影等作品 不需要申请,作品完成就开始保护。 绘画或摄影作品原件出售(赠予)著作权归还原作者,原件拥有者有所有权和展览权。 软件著作权法 计算机软件保护条例 软件著作权 软…...
【新】致远OA从前台XXE到RCE漏洞分析
0x01 前言 致远OA是目前国内最流行的OA系统之一,前几年也曾爆出过多个安全漏洞。致远官方一直对修复漏洞的态度十分积极,目前能有效利用的致远漏洞已经很少了。 和我们之前分享过的通达OA的漏洞类似,这类主流OA系统现在想要直接一步达到RCE的…...
宠物领养系统jsp+servlet+mysql
设计不同用户的操作权限、注册和登录方法。 管理员可以在管理员管理、用户管理、宠物管理、评论管理、团队活动管理、志愿者的申请等等模块中进行查询、添加、删除、修改。 管理员可以在领养管理中通过领养时间查询所有宠物被领养的信息,修改是否同意领养宠物&#…...
MySQL 数据库安全性练习题
数据库安全性 一、实验目的 (1)熟悉通过MySQL对数据进行安全性控制 二、实验环境 Windows 11 MySQL Navicat 三、实验内容 今有以下两个关系模式: 职工(职工号,姓名,年龄,职务,工…...
如何使用Node.js快速创建HTTP服务器并实现公网访问本地Server
文章目录 前言1.安装Node.js环境2.创建node.js服务3. 访问node.js 服务4.内网穿透4.1 安装配置cpolar内网穿透4.2 创建隧道映射本地端口 5.固定公网地址 前言 Node.js 是能够在服务器端运行 JavaScript 的开放源代码、跨平台运行环境。Node.js 由 OpenJS Foundation࿰…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...
visual studio 2022更改主题为深色
visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...
iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...
最新SpringBoot+SpringCloud+Nacos微服务框架分享
文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的,根据Excel列的需求预估的工时直接打骨折,不要问我为什么,主要…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的
修改bug思路: 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑:async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...
苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会
在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...
学习一下用鸿蒙DevEco Studio HarmonyOS5实现百度地图
在鸿蒙(HarmonyOS5)中集成百度地图,可以通过以下步骤和技术方案实现。结合鸿蒙的分布式能力和百度地图的API,可以构建跨设备的定位、导航和地图展示功能。 1. 鸿蒙环境准备 开发工具:下载安装 De…...
