当前位置: 首页 > news >正文

线性代数之 伪逆矩阵

目录

一、伪逆矩阵

◼ A的伪逆矩阵与SVD

◼ 用Python代码计算A的伪逆矩阵

◼ 笔算A的伪逆矩阵


一、伪逆矩阵

◼ A的伪逆矩阵与SVD

逆矩阵并不总是存在,即使是方阵。然而,对于非正方形矩阵,存在一个伪逆矩阵,也叫摩尔-彭罗斯逆矩阵。

例如,矩阵A是m×n。使用伪逆矩阵A^+,我们可以进行以下转换。

 

我们定义伪逆矩阵A^+为:

V和U来自奇异值分解。

我们通过转置Σ和所有对角元素的逆得到D^+。假设Σ的定义如下:

那么D+的定义如下:

现在,我们可以看到A^+A的原理:

以同样的方式,AA^+ = I。

综上所述,如果我们能够对矩阵A进行奇异值分解,我们就可以通过VD^+UT来计算A^+,这是一个A的伪逆矩阵。

 

对于任意一个矩阵A,A的伪逆矩阵必然存在,且必然满足以下四个条件:

这四个条件(性质)蕴含了一个事情:AA^+必然是一个效果等同单位矩阵I、但又不是单位矩阵I的矩阵。

伪逆矩阵的极限形式定义:

 伪逆矩阵更加常用的定义(基于SVD奇异值分解)

这个公式要注意的是中间的的求法。因为是一个对角线矩阵,但又不一定是方阵,所以计算它的伪逆矩阵的步骤是特殊又简单的:

  1. 将对角线上的元素取倒数

  2. 再将整个矩阵转置一次

◼ 用Python代码计算A的伪逆矩阵

让我们用Numpy试试伪逆矩阵吧,

import numpy as npA = np.array([[1, 2],[3, 4],[5, 6]], dtype=np.float64)
AP = np.linalg.pinv(A)
print('AP @ A')
print(AP @ A)

下面是输出结果: 

 

◼ 笔算A的伪逆矩阵

我们把矩阵 A 定义为:

我们首先求出 A^TA 和  AA^T ,

 进而求出  A^TA 的特征值和特征向量:

利用 Aνi​=σi​υi​,i=1,2 求奇异值:

当然,我们也可以用 σ i =sqrt{ λ i },​直接求出奇异值为sqrt{3} ​和 1。最终,可以得到 A 的奇异值分解为:

其中,矩阵 U ,D和 V 是矩阵 A奇异值分解后得到的矩阵。对角矩阵 D的伪逆 D^+ 是其非零元素取倒数之后再转置得到的。所以可以得到 A 的伪逆为:

 

 

相关文章:

线性代数之 伪逆矩阵

目录 一、伪逆矩阵 ◼ A的伪逆矩阵与SVD ◼ 用Python代码计算A的伪逆矩阵 ◼ 笔算A的伪逆矩阵 一、伪逆矩阵 ◼ A的伪逆矩阵与SVD 逆矩阵并不总是存在,即使是方阵。然而,对于非正方形矩阵,存在一个伪逆矩阵,也叫摩尔-彭罗斯…...

【3D图像分割】基于Pytorch的VNet 3D 图像分割5(改写数据流篇)

在这篇文章:【3D 图像分割】基于 Pytorch 的 VNet 3D 图像分割2(基础数据流篇) 的最后,我们提到了: 在采用vent模型进行3d数据的分割训练任务中,输入大小是16*96*96,这个的裁剪是放到Dataset类…...

【漏洞复现】Apache_Shiro_1.2.4_反序列化漏洞(CVE-2016-4437)

感谢互联网提供分享知识与智慧,在法治的社会里,请遵守有关法律法规 文章目录 1.1、漏洞描述1.2、漏洞等级1.3、影响版本1.4、漏洞复现1、基础环境2、漏洞分析3、漏洞验证 说明内容漏洞编号CVE-2016-4437漏洞名称Apache_Shiro_1.2.4_反序列化漏洞漏洞评级…...

Mac连接linux的办法(自带终端和iterm2)

1. 使用Mac自带终端Terminal 1.1 点击右上角的聚焦搜索,再输入终端 1.2 查找linux系统的ip地址 在虚拟机里输入如下命令,找到蓝色区域的就是ip地址 ip addr 如果没有显示ip地址,可以重新安装一下虚拟机,之后确保以太网的连接是打…...

js调整table表格上下相邻元素顺序

有时候我们会遇到要通过箭头控制table表格上下顺序的需求,如下: 点击向下就将该元素下移一位,下面的一位元素就移上来,点击向上就将该元素上移一位,上面的一位元素就移下来,也就是相邻元素互换位置顺序: <el-table :data="targetTable" border style=&quo…...

基于ruoyi框架项目-部署到服务器上

基于ruoyi框架项目-部署到服务器上 文章目录 基于ruoyi框架项目-部署到服务器上1.前端vue编译&#xff0c;后的dist下内容打包&#xff08;前后端分离版本需要&#xff09;2.后端打包成jar包&#xff08;如果是thymeleaf仅需打包jar&#xff09;3.上传到服务器目录下4. docker部…...

Docker 持久化存储和数据共享_Volume

有些容器会自动产生一些数据&#xff0c;为了不让数据随着 container 的消失而消失&#xff0c;保证数据的安全性。例如&#xff1a;数据库容器&#xff0c;数据表的表会产生一些数据&#xff0c;如果我把 container 给删除&#xff0c;数据就丢失。为了保证数据不丢失&#xf…...

万宾科技智能井盖监测仪器助力建设数字化城市

市政公共设施建设在近几年来发展迅速&#xff0c;市政设备的更新换代&#xff0c;资产管理等也成为其中的重要一项。在市政设施建设过程中&#xff0c;井盖也是不可忽视的&#xff0c;一方面&#xff0c;根据传统的管理井盖模式来讲&#xff0c;缺乏有效的远程监控管理方法和手…...

第十一章《搞懂算法:聚类是怎么回事》笔记

聚类是机器学习中一种重要的无监督算法&#xff0c;可以将数据点归结为一系列的特定组合。归为一类的数据点具有相同的特性&#xff0c;而不同类别的数据点则具有各不相同的属性。 11.1 聚类算法介绍 人们将物理或抽象对象的集合分成由类似 的对象组成的多个类的过程被称为聚…...

给定n个点或一个凸边形,求其最小外接矩形,可视化

这里写目录标题 原理代码 原理 求n个点的最小外接矩形问题可以等价为先求这n个点的凸包&#xff0c;再求这个凸包的最小外接矩形。 其中求凸包可以使用Graham-Scan算法 需要注意的是&#xff0c; 因为Graham-Scan算法要求我们从先找到凸包上的一个点&#xff0c;所以我们可以先…...

蓝桥杯每日一题2023.11.6

取位数 - 蓝桥云课 (lanqiao.cn) 题目描述 题目分析 由题意我们知道len中为现阶段长度&#xff0c;如果其与k相等也就是找到了正确的位数&#xff0c;否则就调用递归来进行搜索&#xff0c;每次搜索一位数。 #include <stdio.h> // 求x用10进制表示时的数位长度 int …...

V-REP和Python的联合仿真

机器人仿真软件 各类免费的的机器人仿真软件优缺点汇总_robot 仿真 软件收费么_dyannacon的博客-CSDN博客 课程地址 https://class.guyuehome.com/p/t_pc/course_pc_detail/column/p_605af87be4b007b4183a42e7 课程资料 guyueclass: 古月学院课程代码 旋转变换 旋转的左乘与…...

WPF布局控件之DockPanel布局

前言&#xff1a;博主文章仅用于学习、研究和交流目的&#xff0c;不足和错误之处在所难免&#xff0c;希望大家能够批评指出&#xff0c;博主核实后马上更改。 概述&#xff1a; DockPanel 位置子控件基于子 Dock 属性&#xff0c;你有 4 个选项停靠&#xff0c;左 (默认) &…...

【实战Flask API项目指南】之二 Flask基础知识

实战Flask API项目指南之 Flask基础知识 本系列文章将带你深入探索实战Flask API项目指南&#xff0c;通过跟随小菜的学习之旅&#xff0c;你将逐步掌握Flask 在实际项目中的应用。让我们一起踏上这个精彩的学习之旅吧&#xff01; 前言 当小菜踏入Flask后端开发的世界&…...

Linux 编译链接那些事儿(02)C++链接库std::__cxx11::basic_string和std::__1::basic_string链接问题总结

1 问题背景说明 在自己的项目源码中引用libeasysqlite.so时编译成功&#xff0c;但运行时遇到问题直接报错&#xff0c;找不到符号 symbol&#xff1a;_ZN3sql5FieldC1ENSt3__112basic_stringIcNS1_11char_traitsIcEENS1_9allocatorIcEEEENS_10field_typeEi。 2 问题描述和解…...

按键精灵中的UI界面操作

1. 按键精灵中UI界面常用的控件 1. 文字框 界面1: {标签页1:{文字框:{名称:"文字框1",显示内容:"显示内容",文字大小:0,高度:0,宽度:0,注释:"文字大小、高度、宽度是可选属性&#xff0c;如需使用默认值&#xff0c;可保持值为0或直接删除此属性&qu…...

dpdk 程序如何配置网卡收发包队列描述符配置?

问题描述 dpdk 程序在配置网卡队列时会涉及收发包队列描述符数量配置问题&#xff0c;收发包描述符的数量看似是一个简单的配置&#xff0c;却对转发性能有着一定的影响。实际业务程序中&#xff0c;收发包描述符大小配置一般参考 dpdk 内部示例程序配置进行&#xff0c;经验之…...

二蛋赠书七期:《云原生数据中台:架构、方法论与实践》

前言 大家好&#xff01;我是二蛋&#xff0c;一个热爱技术、乐于分享的工程师。在过去的几年里&#xff0c;我一直通过各种渠道与大家分享技术知识和经验。我深知&#xff0c;每一位技术人员都对自己的技能提升和职业发展有着热切的期待。因此&#xff0c;我非常感激大家一直…...

计算机毕设 基于大数据的服务器数据分析与可视化系统 -python 可视化 大数据

文章目录 0 前言1 课题背景2 实现效果3 数据收集分析过程**总体框架图****kafka 创建日志主题****flume 收集日志写到 kafka****python 读取 kafka 实时处理****数据分析可视化** 4 Flask框架5 最后 0 前言 &#x1f525; 这两年开始毕业设计和毕业答辩的要求和难度不断提升&a…...

初识rust

调试下rust 的执行流程 参考&#xff1a; 认识 Cargo - Rust语言圣经(Rust Course) 新建一个hello world 程序&#xff1a; fn main() {println!("Hello, world!"); }用IDA 打开exe&#xff0c;并加载符号&#xff1a; 根据字符串找到主程序入口&#xff1a; 双击…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下&#xff0c;知识图谱凭借其高效的信息组织能力&#xff0c;正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合&#xff0c;探讨知识图谱开发的实现细节&#xff0c;帮助读者掌握该技术栈在实际项目中的落地方法。 …...

【JavaSE】绘图与事件入门学习笔记

-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角&#xff0c;以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向&#xff0c;距离坐标原点x个像素;第二个是y坐标&#xff0c;表示当前位置为垂直方向&#xff0c;距离坐标原点y个像素。 坐标体系-像素 …...

(转)什么是DockerCompose?它有什么作用?

一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用&#xff0c;而无需手动一个个创建和运行容器。 Compose文件是一个文本文件&#xff0c;通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

.Net Framework 4/C# 关键字(非常用,持续更新...)

一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

tomcat入门

1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效&#xff0c;稳定&#xff0c;易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...