当前位置: 首页 > news >正文

【MongoDB】MongoExport如何过滤数据导出

问题

使用MongoDB处理导出数据时,想增加数据过滤操作。

例如:导出所有isGirltrue的所有数据。

分析

在mongoexport说明文档中找到了query字段和queryFile字段,用来进行数据查询匹配导出。

query字段 后面直接跟 json格式数据。
queryFile字段 后面跟 存储json数据的文件路径。

注意query后的json数据一定要注意双引号的转义

解决

1、先直接导出数据表中所有数据做为对比:

mongoexport --host "127.0.0.1" --port "27017" --authenticatinDatabase "admin" -u admin -p password -d class -c student_info -o \Data\student_info.json

执行结果:141条数据记录
在这里插入图片描述

2、使用query字段进行数据过滤

mongoexport --host "127.0.0.1" --port "27017" --authenticatinDatabase "admin" -u admin -p password -d class -c student_info -q "{\"isGirl\":true}" -o \Data\student_info.json

执行结果:61条数据记录
在这里插入图片描述

注意:这里一定要注意双引号的转义!!不然就会报错无法解析json数据:
在这里插入图片描述

3、使用queryFile字段进行数据过滤

先将json数据存储在txt文件中:
在这里插入图片描述

然后使用queryFile字段进行过滤:

mongoexport --host "127.0.0.1" --port "27017" --authenticatinDatabase "admin" -u admin -p password -d class -c student_info --queryFile "1.txt" -o \Data\student_info.json

执行结果:61条数据记录
在这里插入图片描述

那接下来匹配一下isGirlfalse的数据记录吧:
在这里插入图片描述

再次执行查看结果:80条数据记录
在这里插入图片描述

ok!搞定!

相关文章:

【MongoDB】MongoExport如何过滤数据导出

问题 使用MongoDB处理导出数据时,想增加数据过滤操作。 例如:导出所有isGirl为true的所有数据。 分析 在mongoexport说明文档中找到了query字段和queryFile字段,用来进行数据查询匹配导出。 query字段 后面直接跟 json格式数据。 queryF…...

吴恩达《机器学习》6-1->6-3:分类问题、假设陈述、决策界限

一、什么是分类问题? 在分类问题中,我们试图预测的变量𝑦是离散的值,通常表示某种类别或标签。这些类别可以是二元的,也可以是多元的。分类问题的示例包括: 判断一封电子邮件是否是垃圾邮件(二…...

C语言 用字符串比较函数cmp来做一个门禁:账号密码是否匹配 (干货满满)

#include<stdio.h> #include<string.h> void fun04() {for (int i 0; i < 3; i){char *str01 "hello";char uname[100] ;printf("请输入账号");scanf("%s",uname);char *str02 "123456";char pword[100];printf(&qu…...

Uniapp实现多语言切换

前言 之前做项目过程中&#xff0c;也做过一次多语言切换&#xff0c;大致思想都是一样的&#xff0c;想了解的可以看下之前的文章C#WinForm实现多语言切换 使用i18n插件 安装插件 npm install vue-i18n --saveMain.js配置 // 引入 多语言包 import VueI18n from vue-i18n…...

企业数字化转型与供应链效率-基准回归复刻(2007-2022年)

参照张树山&#xff08;2023&#xff09;的做法&#xff0c;本团队对来自统计与决策《企业数字化转型与供应链效率》一文中的基准回归部分进行复刻。文章实证检验企业数字化转型对供应链效率的影响。用年报词频衡量上市公司数字化转型程度&#xff0c;以库存周转天数来衡量供应…...

支持向量机 (SVM):初学者指南

照片由 Unsplash上的 vackground.com提供 一、说明 SVM&#xff08;支持向量机&#xff09;简单而优雅用于分类和回归的监督机器学习方法。该算法试图找到一个超平面&#xff0c;将数据分为不同的类&#xff0c;并具有尽可能最大的边距。本篇我们将介绍如果最大边距不存在的时候…...

UnityShader(五)

这次要用表面着色器实现一个水的特效。先翻到最下边看代码&#xff0c;看不懂再看下面的解释。 首先第一步要实现水的深浅判断&#xff0c;实现深水区和浅水区的区分。 这里需要用到深度图的概念。不去说太多概念&#xff0c;只去说怎么实现的&#xff0c;首先我们的水面是在…...

Java中的类和对象

文章目录 一、类和对象的基本概念二、类和对象的定义和使用1.创建类的语法2.创建类的对象3.范例(创建一个类的对象) 三、this引用1.什么是this引用2.this引用的特性 四、构造方法五、封装1.封装的概念2.访问限定符3.封装扩展包3.1包的概念3.2常见的包 六、static成员1.static修…...

多测师肖sir_高级金牌讲师_jenkins搭建

jenkins操作手册 一、jenkins介绍 1、持续集成&#xff08;CI&#xff09; Continuous integration 持续集成 团队开发成员每天都有集成他们的工作&#xff0c;通过每个成员每天至少集成一次&#xff0c;也就意味着一天有可 能多次集成。在工作中我们引入持续集成&#xff0c;通…...

Ps:色彩范围

Ps菜单&#xff1a;选择/色彩范围 Select/Color Range 色彩范围 Color Range是一个功能强大选择命令&#xff0c;不仅可以基于颜色进行选择&#xff0c;而且可以基于影调进行选择。不仅可以用来检测人脸选择肤色&#xff0c;也可用来选择超出印刷色域范围的区域。 在图层蒙版的…...

基于SSM的宠物医院管理系统

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;Vue 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#xff1a;是 目录…...

华为政企园区网络交换机产品集

产品类型产品型号产品说明 核心/汇聚交换机CloudEngine S5731-H24P4XCCloudEngine S5731-H24P4XC 提供 24个10/100/1000BASE-T以太网端口&#xff0c;4个万兆SFP&#xff0c;CloudEngine S5731-H 系列交换机是华为公司推出的新一代智能千兆交换机&#xff0c;基于华为公司统…...

NVMe FDP会被广泛使用吗?

文章开头&#xff0c;我们需要先了解固态硬盘的读写机制。我们知道&#xff0c;固态硬盘的存储单元是由闪存颗粒组成的&#xff0c;无法实现物理性的数据覆盖&#xff0c;只能擦除然后写入&#xff0c;重复这一过程。因而&#xff0c;我们可以想象得到&#xff0c;在实际读写过…...

[黑马程序员Pandas教程]——Pandas数据结构

目录&#xff1a; 学习目标认识Pandas中的数据结构和数据类型Series对象通过numpy.ndarray数组来创建通过list列表来创建使用字典或元组创建s对象在notebook中不写printSeries对象常用API布尔值列表获取Series对象中部分数据Series对象的运算DataFrame对象创建df对象DataFrame…...

AI 绘画 | Stable Diffusion 提示词

Prompts提示词简介 在Stable Diffusion中&#xff0c;Prompts是控制模型生成图像的关键输入参数。它们是一种文本提示&#xff0c;告诉模型应该生成什么样的图像。 Prompts可以是任何文本输入&#xff0c;包括描述图像的文本&#xff0c;如“一只橘色的短毛猫&#xff0c;坐在…...

tomcat默认最大线程数、等待队列长度、连接超时时间

tomcat默认最大线程数、等待队列长度、连接超时时间 tomcat的默认最大线程数是200&#xff0c;默认核心线程数(最小空闲线程数)是10。 在核心线程数满了之后&#xff0c;会直接启用最大线程数&#xff08;和JDK线程池不一样&#xff0c;JDK线程池先使用工作队列再使用最大线程…...

本地部署 CogVLM

本地部署 CogVLM CogVLM 是什么CogVLM Github 地址部署 CogVLM启动 CogVLM CogVLM 是什么 CogVLM 是一个强大的开源视觉语言模型&#xff08;VLM&#xff09;。CogVLM-17B 拥有 100 亿视觉参数和 70 亿语言参数。 CogVLM-17B 在 10 个经典跨模态基准测试上取得了 SOTA 性能&am…...

bff层解决了什么痛点

bff层 -- 服务于前端的后端 什么是bff&#xff1f; Backend For Frontend&#xff08;服务于前端的后端&#xff09;&#xff0c;也就是服务器设计API的时候会考虑前端的使用&#xff0c;并在服务端直接进行业务逻辑的处理&#xff0c;又称为用户体验适配器。BFF只是一种逻辑…...

面试经典150题——Day33

文章目录 一、题目二、题解 一、题目 76. Minimum Window Substring Given two strings s and t of lengths m and n respectively, return the minimum window substring of s such that every character in t (including duplicates) is included in the window. If there …...

再谈Android重要组件——Handler(Native篇)

前言 最近工作比较忙&#xff0c;没怎么记录东西了。Android的Handler重要性不必赘述&#xff0c;之前也写过几篇关于hanlder的文章了&#xff1a; Handler有多深&#xff1f;连环二十七问Android多线程&#xff1a;深入分析 Handler机制源码&#xff08;二&#xff09; And…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils&#xff1a; ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类&#xff0c;封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz&#xff0c;先构建任务的 JobD…...

【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表

1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...