【MongoDB】MongoExport如何过滤数据导出
问题
使用MongoDB处理导出数据时,想增加数据过滤操作。
例如:导出所有isGirl为true的所有数据。
分析
在mongoexport说明文档中找到了query字段和queryFile字段,用来进行数据查询匹配导出。
query字段 后面直接跟 json格式数据。
queryFile字段 后面跟 存储json数据的文件路径。
注意:query后的json数据一定要注意双引号的转义!
解决
1、先直接导出数据表中所有数据做为对比:
mongoexport --host "127.0.0.1" --port "27017" --authenticatinDatabase "admin" -u admin -p password -d class -c student_info -o \Data\student_info.json
执行结果:141条数据记录
2、使用query字段进行数据过滤
mongoexport --host "127.0.0.1" --port "27017" --authenticatinDatabase "admin" -u admin -p password -d class -c student_info -q "{\"isGirl\":true}" -o \Data\student_info.json
执行结果:61条数据记录
注意:这里一定要注意双引号的转义!!不然就会报错无法解析json数据:
3、使用queryFile字段进行数据过滤
先将json数据存储在txt文件中:
然后使用queryFile字段进行过滤:
mongoexport --host "127.0.0.1" --port "27017" --authenticatinDatabase "admin" -u admin -p password -d class -c student_info --queryFile "1.txt" -o \Data\student_info.json
执行结果:61条数据记录
那接下来匹配一下isGirl为false的数据记录吧:
再次执行查看结果:80条数据记录
ok!搞定!
相关文章:

【MongoDB】MongoExport如何过滤数据导出
问题 使用MongoDB处理导出数据时,想增加数据过滤操作。 例如:导出所有isGirl为true的所有数据。 分析 在mongoexport说明文档中找到了query字段和queryFile字段,用来进行数据查询匹配导出。 query字段 后面直接跟 json格式数据。 queryF…...

吴恩达《机器学习》6-1->6-3:分类问题、假设陈述、决策界限
一、什么是分类问题? 在分类问题中,我们试图预测的变量𝑦是离散的值,通常表示某种类别或标签。这些类别可以是二元的,也可以是多元的。分类问题的示例包括: 判断一封电子邮件是否是垃圾邮件(二…...

C语言 用字符串比较函数cmp来做一个门禁:账号密码是否匹配 (干货满满)
#include<stdio.h> #include<string.h> void fun04() {for (int i 0; i < 3; i){char *str01 "hello";char uname[100] ;printf("请输入账号");scanf("%s",uname);char *str02 "123456";char pword[100];printf(&qu…...

Uniapp实现多语言切换
前言 之前做项目过程中,也做过一次多语言切换,大致思想都是一样的,想了解的可以看下之前的文章C#WinForm实现多语言切换 使用i18n插件 安装插件 npm install vue-i18n --saveMain.js配置 // 引入 多语言包 import VueI18n from vue-i18n…...

企业数字化转型与供应链效率-基准回归复刻(2007-2022年)
参照张树山(2023)的做法,本团队对来自统计与决策《企业数字化转型与供应链效率》一文中的基准回归部分进行复刻。文章实证检验企业数字化转型对供应链效率的影响。用年报词频衡量上市公司数字化转型程度,以库存周转天数来衡量供应…...

支持向量机 (SVM):初学者指南
照片由 Unsplash上的 vackground.com提供 一、说明 SVM(支持向量机)简单而优雅用于分类和回归的监督机器学习方法。该算法试图找到一个超平面,将数据分为不同的类,并具有尽可能最大的边距。本篇我们将介绍如果最大边距不存在的时候…...

UnityShader(五)
这次要用表面着色器实现一个水的特效。先翻到最下边看代码,看不懂再看下面的解释。 首先第一步要实现水的深浅判断,实现深水区和浅水区的区分。 这里需要用到深度图的概念。不去说太多概念,只去说怎么实现的,首先我们的水面是在…...

Java中的类和对象
文章目录 一、类和对象的基本概念二、类和对象的定义和使用1.创建类的语法2.创建类的对象3.范例(创建一个类的对象) 三、this引用1.什么是this引用2.this引用的特性 四、构造方法五、封装1.封装的概念2.访问限定符3.封装扩展包3.1包的概念3.2常见的包 六、static成员1.static修…...

多测师肖sir_高级金牌讲师_jenkins搭建
jenkins操作手册 一、jenkins介绍 1、持续集成(CI) Continuous integration 持续集成 团队开发成员每天都有集成他们的工作,通过每个成员每天至少集成一次,也就意味着一天有可 能多次集成。在工作中我们引入持续集成,通…...

Ps:色彩范围
Ps菜单:选择/色彩范围 Select/Color Range 色彩范围 Color Range是一个功能强大选择命令,不仅可以基于颜色进行选择,而且可以基于影调进行选择。不仅可以用来检测人脸选择肤色,也可用来选择超出印刷色域范围的区域。 在图层蒙版的…...

基于SSM的宠物医院管理系统
末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:Vue 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目:是 目录…...
华为政企园区网络交换机产品集
产品类型产品型号产品说明 核心/汇聚交换机CloudEngine S5731-H24P4XCCloudEngine S5731-H24P4XC 提供 24个10/100/1000BASE-T以太网端口,4个万兆SFP,CloudEngine S5731-H 系列交换机是华为公司推出的新一代智能千兆交换机,基于华为公司统…...

NVMe FDP会被广泛使用吗?
文章开头,我们需要先了解固态硬盘的读写机制。我们知道,固态硬盘的存储单元是由闪存颗粒组成的,无法实现物理性的数据覆盖,只能擦除然后写入,重复这一过程。因而,我们可以想象得到,在实际读写过…...

[黑马程序员Pandas教程]——Pandas数据结构
目录: 学习目标认识Pandas中的数据结构和数据类型Series对象通过numpy.ndarray数组来创建通过list列表来创建使用字典或元组创建s对象在notebook中不写printSeries对象常用API布尔值列表获取Series对象中部分数据Series对象的运算DataFrame对象创建df对象DataFrame…...

AI 绘画 | Stable Diffusion 提示词
Prompts提示词简介 在Stable Diffusion中,Prompts是控制模型生成图像的关键输入参数。它们是一种文本提示,告诉模型应该生成什么样的图像。 Prompts可以是任何文本输入,包括描述图像的文本,如“一只橘色的短毛猫,坐在…...
tomcat默认最大线程数、等待队列长度、连接超时时间
tomcat默认最大线程数、等待队列长度、连接超时时间 tomcat的默认最大线程数是200,默认核心线程数(最小空闲线程数)是10。 在核心线程数满了之后,会直接启用最大线程数(和JDK线程池不一样,JDK线程池先使用工作队列再使用最大线程…...
本地部署 CogVLM
本地部署 CogVLM CogVLM 是什么CogVLM Github 地址部署 CogVLM启动 CogVLM CogVLM 是什么 CogVLM 是一个强大的开源视觉语言模型(VLM)。CogVLM-17B 拥有 100 亿视觉参数和 70 亿语言参数。 CogVLM-17B 在 10 个经典跨模态基准测试上取得了 SOTA 性能&am…...

bff层解决了什么痛点
bff层 -- 服务于前端的后端 什么是bff? Backend For Frontend(服务于前端的后端),也就是服务器设计API的时候会考虑前端的使用,并在服务端直接进行业务逻辑的处理,又称为用户体验适配器。BFF只是一种逻辑…...
面试经典150题——Day33
文章目录 一、题目二、题解 一、题目 76. Minimum Window Substring Given two strings s and t of lengths m and n respectively, return the minimum window substring of s such that every character in t (including duplicates) is included in the window. If there …...

再谈Android重要组件——Handler(Native篇)
前言 最近工作比较忙,没怎么记录东西了。Android的Handler重要性不必赘述,之前也写过几篇关于hanlder的文章了: Handler有多深?连环二十七问Android多线程:深入分析 Handler机制源码(二) And…...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...

cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
laravel8+vue3.0+element-plus搭建方法
创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

计算机基础知识解析:从应用到架构的全面拆解
目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...
人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent
安全大模型训练计划:基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标:为安全大模型创建高质量、去偏、符合伦理的训练数据集,涵盖安全相关任务(如有害内容检测、隐私保护、道德推理等)。 1.1 数据收集 描…...
【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验
Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...
如何配置一个sql server使得其它用户可以通过excel odbc获取数据
要让其他用户通过 Excel 使用 ODBC 连接到 SQL Server 获取数据,你需要完成以下配置步骤: ✅ 一、在 SQL Server 端配置(服务器设置) 1. 启用 TCP/IP 协议 打开 “SQL Server 配置管理器”。导航到:SQL Server 网络配…...

yaml读取写入常见错误 (‘cannot represent an object‘, 117)
错误一:yaml.representer.RepresenterError: (‘cannot represent an object’, 117) 出现这个问题一直没找到原因,后面把yaml.safe_dump直接替换成yaml.dump,确实能保存,但出现乱码: 放弃yaml.dump,又切…...