当前位置: 首页 > news >正文

Unit2_1:动态规划DP

文章目录

  • 一、介绍
  • 二、0-1背包问题
    • 问题描述
    • 分析
    • 伪代码
    • 时间复杂度
  • 三、钢条切割问题
    • 问题描述
    • 分析
    • 伪代码
    • 过程
  • 四、矩阵链乘法
    • 背景
    • 性质
    • 分析
    • 案例
    • 伪代码

一、介绍

动态规划类似于分治法,它们都将一个问题划分为更小的子问题
最优子结构:问题的最优解包含子问题的最优解。DP适用的原因就在这
当子问题重叠时,即它们共享公共子问题时,可减小时间复杂度
DP通常用于优化问题,有许多解决方案的问题,我们想找到最好的一个
DP问题的求解思路一般就是
   先描述最优解的结构
   递归地定义最优解的值
   计算最优解的值(通常是自下而上)
   根据计算出的信息构造最优解(如果需要)

二、0-1背包问题

问题描述

n 个商品 , v i 表示第 i 个物品的价值 , w i 表示第 i 个物品的重量 一个能装入 W 重的背包 , 使用背包装下价值最多的物品 限制条件 : 我们不能取物品的一部分,我们取整个物品,或者什么都不取。 ( 这就是为什么它被称为 0 − 1 背包。 ) n个商品,v_i表示第i个物品的价值,w_i表示第i个物品的重量\\ 一个能装入W重的背包,使用背包装下价值最多的物品\\ 限制条件:我们不能取物品的一部分,我们取整个物品,或者什么都不取。\\(这就是为什么它被称为0-1背包。) n个商品,vi表示第i个物品的价值,wi表示第i个物品的重量一个能装入W重的背包,使用背包装下价值最多的物品限制条件:我们不能取物品的一部分,我们取整个物品,或者什么都不取。(这就是为什么它被称为01背包。)

分析

V [ i , w ] 表示重量为 w 背包 , 在前 i 种商品选择的最大价值 V[i,w]表示重量为w背包,在前i种商品选择的最大价值 V[i,w]表示重量为w背包,在前i种商品选择的最大价值
对于第i个物品,我们要么选取它,要么不选择,因此最大价值转移方程为

V [ i , w ] = m a x ( V [ i − 1 , w ] , v i + V [ i − 1 , w − w i ] ) V[i,w]=max(V[i-1,w],v_i+V[i-1,w-w_i]) V[i,w]=max(V[i1,w],vi+V[i1,wwi])

若使用递归重复计算很多值,时间复杂度为 T ( n ) = O ( 2 W ) T(n)=O(2^W) T(n)=O(2W),因此要重复利用最优子结构的性质.
在这里插入图片描述
初始化: V [ 0 , w ] = 0 V[0,w]=0 V[0,w]=0 f o r for for 0 ≤ w ≤ W 0 \leq w \leq W 0wW 此时没有商品,自然没有价值
接下来按顺序填表:
在这里插入图片描述
在这里插入图片描述

伪代码

Knapsack(v,w,n,W)
for w=0 to W doV[0,w]=0;
end
for i=1 to n dofor w=0 to Wif w[i]<W thenV[i,w] = max{V[i-1,w],v[i]+V[i-1,w-w[i]]}elseV[i,w] = V[i-1,w]endend
end
return V[n,W]

若是想要记录最优解的路径,需要维护一个 k e e p [ i ] [ w ] keep[i][w] keep[i][w],如果选择i作为 V [ i , w ] V[i,w] V[i,w],则 k e e p [ i ] [ w ] = 1 keep[i][w]=1 keep[i][w]=1
路径只需要
i f k e e p [ n , w ] = 1. 则选择 n 且继续从 k e p p [ n − 1 ] [ w − w n ] 开始 if keep[n,w]=1.则选择n且继续从kepp[n-1][w-w_n]开始 ifkeep[n,w]=1.则选择n且继续从kepp[n1][wwn]开始
i f k e e p [ n , w ] = 0. 则不选择 n 且继续从 k e p p [ n − 1 ] [ w ] 开始 if keep[n,w]=0.则不选择n且继续从kepp[n-1][w]开始 ifkeep[n,w]=0.则不选择n且继续从kepp[n1][w]开始
因此路径输出代码:

K ← W
for i ← n to 1 doif keep[i][K] is equal to 1 thenOutput iK ← K-w[i]end
end

在这里插入图片描述

时间复杂度

两层循环,时间复杂度 T ( n ) = O ( n W ) T(n)=O(nW) T(n)=O(nW)
本质上,DP问题是用空间换时间,将结果放在空间中而不用下次花费时间再去计算

三、钢条切割问题

问题描述

给定一个长度为 n 的棒材和一个价格表,其中 p i 为长度为 i 的棒材的价格 确定最大的收入 r n , 以及切割钢条的方案 给定一个长度为n的棒材和一个价格表,其中pi为长度为i的棒材的价格\\ 确定最大的收入r_n,以及切割钢条的方案 给定一个长度为n的棒材和一个价格表,其中pi为长度为i的棒材的价格确定最大的收入rn,以及切割钢条的方案

分析

此题暴力解法,即遍历长度.每个点有两种选择,切 o r or or不切,判断哪种选择最合适即可,时间复杂度 T ( n ) = O ( 2 n ) T(n)=O(2^n) T(n)=O(2n).
考虑到最优子结构,可利用较短的杆最优收益来确定较长的,此题的状态转移如下:
r n = m a x ( p n , r 1 + r n − 1 , r 2 + r n − 2 , . . . . . , r n − 1 + r 1 ) r_n=max(p_n,r_1+r_{n-1},r_2+r_{n-2},.....,r_{n-1}+r_1) rn=max(pn,r1+rn1,r2+rn2,.....,rn1+r1)
简化定义:
r n = m a x ( p i + r n − i ) r_n=max(p_i+r_{n-i}) rn=max(pi+rni)      1 ≤ i ≤ n 1 \leq i \leq n 1in

伪代码

r[0] ← 0
for j ← 0 to n doq  ← -∞for i  ← 1 to j doq  ← max(q,p[i]+r[j-i])endr[j]  ← q if j != 0
end
return r[n]

这种做法时间复杂度 T ( n ) = O ( n 2 ) T(n)=O(n^2) T(n)=O(n2)
若是需要保存切割的方案,则需要维护一个 s [ n ] s[n] s[n]数组. s [ n ] 保存前一次切割的长度 s[n]保存前一次切割的长度 s[n]保存前一次切割的长度:

r[0] ← 0
for j ← 0 to n doq  ← -∞for i  ← 1 to j doif q < p[i]+r[j-i] thenq ← p[i]+r[j-i]s[j] ← iendendr[j]  ← q if j != 0
end
while n>0 doOutput s[n]n ← n-s[n]
end

过程

在这里插入图片描述

四、矩阵链乘法

背景

p × q 矩阵 a 和 q × r 矩阵 B 的乘积 C = A B 是 p × r 矩阵 p × q矩阵a和q × r矩阵B的乘积C = AB是p × r矩阵 p×q矩阵aq×r矩阵B的乘积C=ABp×r矩阵

c [ i ] [ j ] = ∑ k = 1 q a [ i ] [ k ] b [ k ] [ j ] c[i][j]=\sum_{k=1}^{q}a[i][k]b[k][j] c[i][j]=k=1qa[i][k]b[k][j] f o r for for 1 ≤ i ≤ p 1 \leq i \leq p 1ip a n d and and 1 ≤ j ≤ r 1 \leq j \leq r 1jr
时间复杂度:注意 C C C p r pr pr个条目,每个条目需要 O ( q ) O(q) O(q)时间来计算,所以整个过程需要 O ( p q r ) O(pqr) O(pqr)时间

性质

矩阵乘法有结合律, A 1 A 2 A 3 = ( A 1 A 2 ) A 3 = A 1 ( A 2 A 3 ) A_1A_2A_3=(A_1A_2)A_3=A_1(A_2A_3) A1A2A3=(A1A2)A3=A1(A2A3)
因此当计算 A B C ABC ABC时,有两种选择, ( A B ) C = A ( B C ) (AB)C=A(BC) (AB)C=A(BC)
m u l t [ ( A B ) C ] = p q r + p r s mult[(AB)C]=pqr+prs mult[(AB)C]=pqr+prs
m u l t [ A ( B C ) ] = q r s + p q s mult[A(BC)]=qrs+pqs mult[A(BC)]=qrs+pqs
每种选择的时间复杂度不一样
因此矩阵链乘法需要解决的就是怎么样结合能使得计算的量最小

分析

令 A i . . j = A i A i + 1 . . . A j 令A_{i..j}=A_iA_{i+1}...A{j} Ai..j=AiAi+1...Aj,显然, A i . . j A_{i..j} Ai..j P i − 1 × P j P_{i-1}×P_j Pi1×Pj的矩阵
A i . . j A_{i..j} Ai..j可以表示为 A i . . j = ( A i . . . A k ) ( A k + 1 . . . A j ) = A i . . k A k + 1.. j A_{i..j}=(A_i...A_k)(A_{k+1}...A{j})=A_{i..k}A_{k+1..j} Ai..j=(Ai...Ak)(Ak+1...Aj)=Ai..kAk+1..j

1 ≤ i ≤ j ≤ n 1 \leq i \leq j \leq n 1ijn时,令 m [ i , j ] m[i,j] m[i,j]表示计算 A i . . j A_{i..j} Ai..j所需的最小乘法次数。最优成本可以用下面的递归定义来描述

m ( i , j ) = { 0 i f i = j m i n i ≤ k ≤ j ( m ( i , k ) + m ( k + 1 , j ) + p i − 1 p k p j ) i f n = 1 m(i,j)=\left\{ \begin{array}{ll} 0 & if \space i=j \\ min_{i \leq k \leq j} (m(i,k)+m(k+1,j)+p_{i-1}p_kp_j)& if \space n=1 \nonumber \end{array} \right. m(i,j)={0minikj(m(i,k)+m(k+1,j)+pi1pkpj)if i=jif n=1

注意计算并保存 m [ i , j ] m[i, j] m[i,j]的顺序是,当计算 m [ i , j ] m[i, j] m[i,j]时, m [ i , k ] m[i, k] m[i,k] m [ k + 1 , j ] m[k + 1, j] m[k+1,j]的值已经可用,因此按矩阵链长度的递增顺序计算它们:

m [ 1 , 2 ] , m [ 2 , 3 ] , m [ 3 , 4 ] , … , m [ n − 3 , n − 2 ] , m [ n − 2 , n − 1 ] , m [ n − 1 , n ] m[1,2], m[2,3], m[3,4],…, m[n-3,n-2], m[n-2,n-1], m[n-1,n] m[1,2],m[2,3],m[3,4],,m[n3,n2],m[n2,n1],m[n1,n]
m [ 1 , 3 ] , m [ 2 , 4 ] , m [ 3 , 5 ] , … , m [ n − 3 , n − 1 ] , m [ n − 2 , n ] m[1,3], m[2,4], m[3,5],…, m[n-3,n-1], m[n-2,n] m[1,3],m[2,4],m[3,5],,m[n3,n1],m[n2,n]
m [ 1 , 4 ] , m [ 2 , 5 ] , m [ 3 , 6 ] , … , m [ n − 3 , n ] m[1,4], m[2,5], m[3,6],…, m[n-3,n] m[1,4],m[2,5],m[3,6],,m[n3,n]
… …
m [ 1 , n − 1 ] , m [ 2 , n ] m[1,n-1], m[2,n] m[1,n1],m[2,n]
m [ 1 , n ] m[1,n] m[1,n]

若需要记录分隔括号路径,需要维护一个二维数组 s [ 1.. n , 1.. n ] s[1..n, 1..n] s[1..n,1..n],里面存储 A i . . j A_{i..j} Ai..j的最优分隔k
s [ 1 , n ] s[1,n] s[1,n]           ( A 1 . . A s [ 1 , n ] ) ( A s [ 1 , n ] + 1 . . . A n ) (A_1..A_{s[1,n]})(A_{s[1,n]+1}...A{n}) (A1..As[1,n])(As[1,n]+1...An)
s [ 1 , s [ 1. n ] ] s[1,s[1.n]] s[1,s[1.n]]           ( A 1 . . A s [ 1 , s [ 1. n ] ] ) ( A s [ 1 , s [ 1. n ] ] + 1 . . . A n ) (A_1..A_{s[1,s[1.n]]})(A_{s[1,s[1.n]]+1}...A{n}) (A1..As[1,s[1.n]])(As[1,s[1.n]]+1...An)

案例

在这里插入图片描述

伪代码

MatrixChain(p,n)
for i ← 1 to n dom[i,i] ← 0;
end
for l ← 2 to n dofor i ← 1 to n-l+1 doj ← i+l-1;m[i,j] ← ∞for k ← i to j-1 doq ← m[i,k]+m[k+1,j]+p[i-1]*p[k]*p[j]if q<m[i,j] thenm[i,j] ← qs[i,j] ← kendendend
end
return m[1,n] and s

三层循环,时间复杂度 T ( n ) = O ( n 3 ) T(n)=O(n^3) T(n)=O(n3)

相关文章:

Unit2_1:动态规划DP

文章目录 一、介绍二、0-1背包问题问题描述分析伪代码时间复杂度 三、钢条切割问题问题描述分析伪代码过程 四、矩阵链乘法背景性质分析案例伪代码 一、介绍 动态规划类似于分治法,它们都将一个问题划分为更小的子问题 最优子结构:问题的最优解包含子问题的最优解。DP适用的原…...

k8s提交spark应用消费kafka数据写入elasticsearch7

一、k8s集群环境 k8s 1.23版本&#xff0c;三个节点&#xff0c;容器运行时使用docker。 spark版本时3.3.3 k8s部署单节点的zookeeper、kafka、elasticsearch7 二、spark源码 https://download.csdn.net/download/TT1024167802/88509398 命令行提交方式 /opt/module/spark…...

linux傻瓜式安装Java环境及中间件

linux配置Java环境及中间件 1.傻瓜式安装Java1.下载2.追加3.刷新测试 2.傻瓜式安装docker1.docker卸载2.docker安装 3.Docker傻瓜式安装Redis1.傻瓜式安装安装并配置 4.Docker傻瓜式安装RabbitMQ5.Docker傻瓜式安装MySql1.拉取2.配置 6.傻瓜式安装Nacos1.官网下载nacos2.SQL文件…...

javascript中的new原理及实现

在js中&#xff0c;我们通过new运算符来创建一个对象&#xff0c;它是一个高频的操作。我们一般只是去用它&#xff0c;而很少关注它是如何实现的&#xff0c;它的工作机制是什么。 1 简介 本文介绍new的功能&#xff0c;用法&#xff0c;补充介绍了不加new也同样创建对象的方…...

R语言 PPT 预习+复习

什么狗吧发明的结业考&#xff0c;站出来和我对线 第一章 绪论 吊码没有&#xff0c;就算考R语言特点我也不背&#xff0c;问就是叫么这没用。 第二章 R语言入门 x<-1:20 赋值语句 x 1到20在x上添加均值为0、标准差为2的正态分布噪声 y <- x rnorm (20, 0, 2) 这…...

轻松实现固定资产智能管理的工具来了

易点易动资产管理系统是一款旨在轻松实现智能资产管理的工具。固定资产管理对于企业的日常经营和可持续发展至关重要。然而&#xff0c;固定资产具有设备价值高、使用周期长、使用地点分散、使用环境恶劣、流动性强、安全管理难度大等特点&#xff0c;传统的管理方式往往无法高…...

软考高级系统架构设计师系列之:微服务

软考高级系统架构设计师系列之:微服务 一、微服务二、微服务的优势三、微服务挑战四、微服务与SOA的对比一、微服务 微服务架构建议将大型复杂的单体架构应用划分为一组微小的服务,每个微服务根据其负责的具体业务职责提炼为单一的业务能力。每个服务可以很容易地部署并发布…...

vue + axios + mock

参考来源&#xff1a;Vue mock.js模拟数据实现首页导航与左侧菜单功能_vue.js_AB教程网 记录步骤&#xff1a;在参考资料来源添加axios步骤 1、安装mock依赖 npm install mock -D //只在开发环境使用 下载完成后&#xff0c;项目文件package.json中的devDependencies就会加…...

Mongoose 开源库--json 使用笔记

一、 json相关API mongoose 开源库可以使用json进行数据处理。 ①创建json字符串 // A helper macro for printing JSON: mg_snprintf(buf, len, "%m", MG_ESC("hi")) #define MG_ESC(str) mg_print_esc, 0, (str) char *mg_mprintf(const char *fmt, ...)…...

linux中复制文件如何排除一个目录

误区&#xff1a; 首先使用cp命令的 --exclude参数实不可取的&#xff0c;会造成以下的报错&#xff0c;因为cp命令中压根就没有--exclude这个参数的配置 cp: unrecognized option --exclude‘****’ 问题解决&#xff1a; 我们可以使用rsync工具来完成目录排除的功能&#x…...

时空智友企业信息管理系统任意文件读取漏洞复现

简介 时空智友企业信息管理系统是一个用于企业流程管理和控制的软件系统。它旨在帮助企业实现流程的规范化、自动化和优化&#xff0c;从而提高工作效率、降低成本并提升管理水平。 时空智友企业信息管理系统存在任意文件读取漏洞&#xff0c;攻击者可以在未授权的情况下读取…...

YOLOv8优化:block系列篇 | Neck系列篇 |可重参化EfficientRepBiPAN优化Neck

🚀🚀🚀本文改进: 可重参化EfficientRepBiPAN优化Neck 如何在YOLOv8下使用:1)结合neck; 🚀🚀🚀EfficientRepBiPAN在各个领域都有ying 🚀🚀🚀YOLOv8改进专栏:http://t.csdnimg.cn/hGhVK 学姐带你学习YOLOv8,从入门到创新,轻轻松松搞定科研; 1.原理…...

零代码编程:用ChatGPT批量提取flash动画swf文件中的mp3

文件夹&#xff1a;C:\迅雷下载\有声绘本_flash[淘宝-珍奥下载]\有声绘本 flash&#xff0c;里面有多个flash文件&#xff0c;怎么转换成mp3文件呢? 可以使用swfextract工具从Flash动画中提取音频&#xff0c;下载地址是http://www.swftools.org/download.html&#xff0c;也…...

2023数学建模国赛C题赛后总结

今天国赛的成绩终于出来了&#xff0c;盼星星盼月亮的。之前面试的时候已经把我给推到国奖评委那里去了&#xff0c;可是好可惜&#xff0c;最终以很微小的劣势错失国二。只拿到了广西区的省一。我心里还是很遗憾的&#xff0c;我真的为此准备了很久&#xff0c;虽然当中也有着…...

hiveSQL语法及练习题整理(mysql)

目录 hiveSQL练习题整理&#xff1a; 第一题 第二题 第三题 第四题 第五题 第六题 第七题 第八题 第九题 第十题 第十一题 第十二题 hivesql常用函数&#xff1a; hiveSQL常用操作语句&#xff08;mysql&#xff09; hiveSQL练习题整理&#xff1a; 第一题 我…...

【UE4】UE编辑器乱码问题

环境&#xff1a;UE4.27、vs2019 如何解决 问题原因&#xff0c;UE的编码默认是UTF-8&#xff0c;VS的默认编码是GBK 通过"高级保存选项" 直接修改VS的 .h头文件 的 编码 为 UTF-8 步骤1. 步骤2. 修改编码后&#xff0c;从新编译&#xff0c;然后就可以解决编辑器…...

2 创建svelte项目(应用程序)

官网方式搭建&#xff1a; npm create sveltelatest my-app cd my-app npm install npm run dev 官网中介绍&#xff1a; 如果您使用的是 VS Code&#xff0c;安装 Svelte for VS Code 就可以了&#xff0c;以便语法高亮显示。 然后&#xff0c;一旦您的项目设置好了&#…...

手机怎么打包?三个方法随心选!

有的时候&#xff0c;电脑不在身边&#xff0c;只有随身携带的手机&#xff0c;这个时候又急需把文件打包发送给同事或者同学&#xff0c;如何利用手机操作呢&#xff1f;下面介绍了具体的操作步骤。 一、通过手机文件管理自带压缩功能打包 1、如果是iOS系统&#xff0c;就在手…...

SecureFX如何用Public key 連接sftp

點擊connection 右鍵點開站點的properties 點選SSH2--Authentication---Pulickey 先選擇Putty Key Generator save出來的public key(.pub)文件&#xff08;Putty Key Generator 保存時可能沒加.pub後綴保存&#xff0c;可自行對public key加上後綴.pub&#xff09; 同時注意要…...

BUUCTF 隐藏的钥匙 1

BUUCTF:https://buuoj.cn/challenges 题目描述&#xff1a; 路飞一行人千辛万苦来到了伟大航道的终点&#xff0c;找到了传说中的One piece&#xff0c;但是需要钥匙才能打开One Piece大门&#xff0c;钥匙就隐藏在下面的图片中&#xff0c;聪明的你能帮路飞拿到钥匙&#xff…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

在rocky linux 9.5上在线安装 docker

前面是指南&#xff0c;后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)

CSI-2 协议详细解析 (一&#xff09; 1. CSI-2层定义&#xff08;CSI-2 Layer Definitions&#xff09; 分层结构 &#xff1a;CSI-2协议分为6层&#xff1a; 物理层&#xff08;PHY Layer&#xff09; &#xff1a; 定义电气特性、时钟机制和传输介质&#xff08;导线&#…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...

在Ubuntu24上采用Wine打开SourceInsight

1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

LRU 缓存机制详解与实现(Java版) + 力扣解决

&#x1f4cc; LRU 缓存机制详解与实现&#xff08;Java版&#xff09; 一、&#x1f4d6; 问题背景 在日常开发中&#xff0c;我们经常会使用 缓存&#xff08;Cache&#xff09; 来提升性能。但由于内存有限&#xff0c;缓存不可能无限增长&#xff0c;于是需要策略决定&am…...

基于PHP的连锁酒店管理系统

有需要请加文章底部Q哦 可远程调试 基于PHP的连锁酒店管理系统 一 介绍 连锁酒店管理系统基于原生PHP开发&#xff0c;数据库mysql&#xff0c;前端bootstrap。系统角色分为用户和管理员。 技术栈 phpmysqlbootstrapphpstudyvscode 二 功能 用户 1 注册/登录/注销 2 个人中…...