当前位置: 首页 > news >正文

11 抽象向量空间

抽象向量空间

  • 向量是什么
  • 函数
  • 什么是线性
  • 推论
  • 向量空间

这是关于3Blue1Brown "线性代数的本质"的学习笔记。

向量是什么

可以是一个箭头,可以是一组实数,即一个坐标对。

箭头在高维(4维,甚至更高)空间,概念比较模糊。

坐标对用数值表示,相对清晰。但数值对依赖于选取的基向量。而且线性代数的核心话题,比如行列式、特征向量等,又和所选坐标系没有关系。

行列式说的是一个变换对面积的缩放比例,特征向量则是在变换中留在它所张成的空间中的向量。坐标系怎么选都不会改变这二者最根本的值。

函数

从某种意义上说,函数实际上只是另一种向量。
( f + g ) ( x ) = f ( x ) + g ( x ) ( 2 f ) ( x ) = 2 f ( x ) (f+g)(x)=f(x)+g(x) \\ (2f)(x)=2f(x) (f+g)(x)=f(x)+g(x)(2f)(x)=2f(x)
用箭头表示的向量的线性代数的所有特征,比如线性变换、数乘、点积等等,都能原封不动地用在函数上。

比如函数的变换,是输入一个函数,并把它变成另一个函数,这的一个例子就是导数,它将函数变换到另一个函数。这在函数中,一般称为算子,而不是变换。这是函数的变换,但怎么算是“线性”的?

什么是线性

满足以下两条性质的变换是线性的:

  • 可加性:对两个向量进行相加,然后对它们的和进行变换,得到的结果和将变换后的两个向量相加一致。
  • 成比例性:将一个向量与某个数相乘,然后对其进行变换,得到的结果和变换后的向量与这个数相乘一致

即线性变换保持向量加法运算和数乘运算。

前面讨论的网格线平行且等距分布,是这两条性质在二维平面这一特殊情况下的体现。
在这里插入图片描述

图1 线性的严格定义

因此,求导是线性运算。满足可加性和数乘性(成比例)质。

推论

一个向量可以表示为基向量以某种方式进行线性组合,所以,求一个向量变换后的结果,实际上就是求出变换后的基向量以相同方式进行线性组合的结果。

向量空间

箭头、一组数、函数等,它们构成的集合被称为“向量空间”。
向量空间中的对象满意以下规则(公理):

在这里插入图片描述

图2 向量加法和数乘规则

相关文章:

11 抽象向量空间

抽象向量空间 向量是什么函数什么是线性推论向量空间 这是关于3Blue1Brown "线性代数的本质"的学习笔记。 向量是什么 可以是一个箭头,可以是一组实数,即一个坐标对。 箭头在高维(4维,甚至更高)空间&…...

干洗店洗鞋店管理系统app小程序;

干洗店洗鞋店管理系统是一款专业的洗衣店管理软件,集成了前台收费收银系统、会员卡管理系统和财务报表系统等强大功能。界面简洁优美,操作直观简单。这款系统为干洗店和洗衣店提供了成本分析、利润分析、洗衣流程管理等诸多实用功能,用全新的…...

NOIP2023模拟13联测34 总结

NOIP2023模拟13联测34 总结 文章目录 NOIP2023模拟13联测34 总结比赛过程题目A. origen题目大意思路 B.competition题目大意思路 C. tour题目大意 D.abstract题目大意 比赛过程 看了一下题,感觉就 T 2 T2 T2 有一点思路。 T 1 T1 T1 先打一个 30 30 30 分暴力&am…...

Python武器库开发-常用模块之subprocess模块(十九)

常用模块之subprocess模块(十九) subprocess模块介绍 subprocess 模块允许我们启动一个新进程,并连接到它们的输入/输出/错误管道,从而获取返回值。subprocess 它可以用来调用第三方工具(例如:exe、另一个python文件、命令行工具…...

java验证 Map 的 key、value 是否可以为空

1、验证示例代码 Map<String, Object> maps new HashMap<>();maps.put("a", "1");maps.put(null, null);maps.put("c", null);System.out.println("maps " maps);Object o maps.get(null);System.out.println("o…...

编写MBR主引导记录

BIOS 检测&#xff0c;初始化硬件。挑一些重要的&#xff0c;能保证计算机能运行那些硬件的基本IO操作。 唤醒BIOS 唤醒BIOS需要知道其入口地址&#xff0c;在最后将跳转到0x7c00处 接电的一瞬间&#xff0c;cs:ip寄存器被初始化为0xF000:0xFFF0&#xff0c;所以等效地址是0…...

从零开始搭建React+TypeScript+webpack开发环境-自定义配置化的模拟服务器

技术栈 我们将使用Node.js和Express.js作为我们的后端框架&#xff0c;以及Node.js的文件系统(fs)模块来操作文件和文件夹。此外&#xff0c;我们将使用Node.js的require和delete require.cache来加载和更新模拟数据。 项目结构 首先&#xff0c;让我们定义一个简单的项目结…...

python 之字典的相关知识

文章目录 字典的基本特点&#xff1a;1. 定义2. 键唯一性3. 可变性4. 键的类型 基本操作&#xff1a;字典的创建1. 花括号 {}2. dict() 构造函数3. 键值对的 dict() 构造函数使用 zip() 函数创建字典&#xff1a;注意事项访问字典中的值修改和添加键值对删除键值对 字典方法&am…...

上下游系统对接的沟通与协作

在工作中&#xff0c;有时会有对接其他部门系统的需求&#xff0c;这种需求虽然不复杂&#xff0c;但是跨部门协作&#xff0c;往往会出现各种难以沟通、协调的情况。 踩的坑多了&#xff0c;就记录下来。 注意&#xff1a;在本文中&#xff0c;A系统调用B系统&#xff0c;A依…...

pytest 的使用===谨记

发现用例的规则 a) 文件test_.py开头和_test.py结尾 b) Test开头的类中test开头的方法&#xff08;测试类不能带有__init__方法&#xff09; c) 模块中test开头的函数&#xff08;可以不在class中&#xff09; 注意点&#xff1a; pytest是以方法为单位发现用例的&#xff0c;你…...

Qt 4.8.6 的下载与安装

Qt 4.8.6 的下载与安装 Qt 4.8.6 的下载与安装下载并解压 MinGW 4.8.2Qt4.8.6 库的安装Qt Creator 3.3.0 的安装配置 Qt Creator测试 官方博客&#xff1a;https://www.yafeilinux.com/ Qt开源社区&#xff1a;https://www.qter.org/ Qt 4.8.6 的下载与安装 学习《Qt Creato…...

图形推理 | 判断推理

文章目录 一、位置规律二、样式规律三、属性规律四、数量规律 一、位置规律 平移 方向&#xff1a;直线&#xff08;上下、左右、斜对角线&#xff09;、绕圈&#xff08;顺逆时针&#xff09;常见步数&#xff1a;恒定、递增&#xff08;等差&#xff09; 旋转 方向&#xff…...

npm的使用

package.json 快速生成package.json npm init -y “version”: “~1.1.0” 格式为&#xff1a;「主版本号. 次版本号. 修订号」。 修改主版本号是做了大的功能性的改动 修改次版本号是新增了新功能 修改修订号就是修复了一些bug dependencies "dependencies": {&…...

Web服务器实战

网站需求 1.基于域名www.openlab.com可以访问网站内容为 welcome to openlab!!! 2.给该公司创建三个网站目录分别显示学生信息&#xff0c;教学资料和缴费网站&#xff0c;基于www.openlab.com/student 网站访问学生信息&#xff0c;www.openlab.com/data网站访问教学资料 www…...

2021年电工杯数学建模B题光伏建筑一体化板块指数发展趋势分析及预测求解全过程论文及程序

2021年电工杯数学建模 B题 光伏建筑一体化板块指数发展趋势分析及预测 原题再现&#xff1a; 国家《第十四个五年规划和 2035 年远景目标纲要》中提出&#xff0c;将 2030 年实现“碳达峰”与 2060 年实现“碳中和”作为我国应对全球气候变暖的一个重要远景目标。光伏建筑一体…...

pandas教程:Essential Functionality 索引 过滤 映射 排序

文章目录 5.2 Essential Functionality&#xff08;主要功能&#xff09;1 Reindexing&#xff08;重新索引&#xff09;2 Dropping Entries from an Axis (按轴删除记录)3 Indexing, Selection, and Filtering(索引&#xff0c;选择&#xff0c;过滤)Selection with loc and i…...

pyspark连接mysql数据库报错

使用pyspark连接mysql数据库代码如下 spark_conf SparkConf().setAppName("MyApp").setMaster("local")spark SparkSession.builder.config(confspark_conf).getOrCreate()url "jdbc:mysql://localhost:3306/test?useUnicodetrue&characterE…...

HK WEB3 MONTH Polkadot Hong Kong 火热报名中!

HK Web3 Month 11月除了香港金融科技周外&#xff0c;HK Web3 Month又是一大盛事&#xff0c;从10月29日开始开幕直到11月18日结束。此次将齐聚世界各地的Web3产业从业者、开发者、社群成员和学生来参与本次盛会。除外&#xff0c;超过75位产业知名的讲者与超过50场工作坊将为…...

“第六十三天”

这两天怎么做的这么别扭&#xff0c;为什么我的vs 的strlen函数包括终止字符了&#xff1b; 哦哦&#xff0c;明白了&#xff0c;fgets函数读取在未达到指定字长&#xff0c;或者遇见空白符之前&#xff0c;会读取前面的所有字符&#xff0c;所以会读取换行符&#xff0c;而get…...

常用排序算法实现

时间复杂度 O ( 1 ) O(1) O(1) void func1(int n){int count 100;count; } void func2(int n){int count 100;for(int i 0; i < count;i){} } int func3(int n){return n; }O ( n ) O(n) O(n) void func1(int n){int count 100;for(int i 0; i < n;i){count;} …...

Python|GIF 解析与构建(5):手搓截屏和帧率控制

目录 Python&#xff5c;GIF 解析与构建&#xff08;5&#xff09;&#xff1a;手搓截屏和帧率控制 一、引言 二、技术实现&#xff1a;手搓截屏模块 2.1 核心原理 2.2 代码解析&#xff1a;ScreenshotData类 2.2.1 截图函数&#xff1a;capture_screen 三、技术实现&…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留&#xff0c;CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制&#xff08;CCA-Attention&#xff09;&#xff0c;…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建

华为云FlexusDeepSeek征文&#xff5c;DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色&#xff0c;华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型&#xff0c;能助力我们轻松驾驭 DeepSeek-V3/R1&#xff0c;本文中将分享如何…...

浅谈不同二分算法的查找情况

二分算法原理比较简单&#xff0c;但是实际的算法模板却有很多&#xff0c;这一切都源于二分查找问题中的复杂情况和二分算法的边界处理&#xff0c;以下是博主对一些二分算法查找的情况分析。 需要说明的是&#xff0c;以下二分算法都是基于有序序列为升序有序的情况&#xf…...

图表类系列各种样式PPT模版分享

图标图表系列PPT模版&#xff0c;柱状图PPT模版&#xff0c;线状图PPT模版&#xff0c;折线图PPT模版&#xff0c;饼状图PPT模版&#xff0c;雷达图PPT模版&#xff0c;树状图PPT模版 图表类系列各种样式PPT模版分享&#xff1a;图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

[ACTF2020 新生赛]Include 1(php://filter伪协议)

题目 做法 启动靶机&#xff0c;点进去 点进去 查看URL&#xff0c;有 ?fileflag.php说明存在文件包含&#xff0c;原理是php://filter 协议 当它与包含函数结合时&#xff0c;php://filter流会被当作php文件执行。 用php://filter加编码&#xff0c;能让PHP把文件内容…...