当前位置: 首页 > news >正文

When Urban Region Profiling Meets Large Language Models

本文是LLM系列文章,针对《When Urban Region Profiling Meets Large Language Models》的翻译。

当城市区域轮廓遇到大型语言模型时

  • 摘要
  • 1 引言
  • 2 前言
  • 3 方法
  • 4 实验
  • 5 结论与未来工作

摘要

基于网络数据的城市区域概况对城市规划和可持续发展至关重要。我们见证了LLM在各个领域的上升趋势,特别是在处理多模态数据研究方面,如视觉语言学习,其中文本模态作为图像的补充信息。由于文本模态从未被引入城市区域分析中的模态组合,我们在本文中试图回答两个基本问题:(1)文本模态能增强城市区域分析吗?ii)如果是,以什么方式以及在哪些方面?为了回答这些问题,我们利用大型语言模型(LLM)的力量,引入了第一个LLM增强框架,该框架将文本模态的知识集成到城市图像分析中,名为LLM增强的城市区域分析与对比语言图像预训练(UrbanCLIP)。具体来说,它首先通过开源的图像到文本LLM为每个卫星图像生成详细的文本描述。然后,在图像-文本对上训练模型,无缝地统一了城市视觉表征学习的自然语言监督,以及对比损失和语言建模损失。对中国四大城市三个城市指标的预测结果表明,该方法具有优越的性能,与最先进的方法相比, R 2 R^2 R2平均提高了6.1%。我们的代码和图像语言数据集将在书面通知后发布。

1 引言

2 前言

3 方法

4 实验

5 结论与未来工作

从社会、经济和环境指标的角度分析城市地区对城市规划和可持续发展至关重要。本文研究了文本形态是否以及如何有利于城市区域分析。为了回答这个问题,我们提出了UrbanCLIP,这是第一个将文本模态集成到城市图像分析中的框架。在LLM的支持下,UrbanCLIP首先为城市图像生成高质量的文本描述。然后将文本-图像对输入到所提出的模型中,该模型无缝地统一了城市视觉表征学习的自然语言监督。大量的实验证明了整合语篇情态的有效性。
我们希望这项工作能推动未来在以下领域对城市区域特征进行研究:1)研究整合城市多模态数据和促进快速增强学习的高效方法;2) 探索使用最新LLM自动生成和细化高质量文本;3) 识别更多潜在的有益下游任务,鼓励其他研究人员探索不同的用例。

相关文章:

When Urban Region Profiling Meets Large Language Models

本文是LLM系列文章,针对《When Urban Region Profiling Meets Large Language Models》的翻译。 当城市区域轮廓遇到大型语言模型时 摘要1 引言2 前言3 方法4 实验5 结论与未来工作 摘要 基于网络数据的城市区域概况对城市规划和可持续发展至关重要。我们见证了LL…...

【python】最大的偶数

题目: """ 给出一个由非负整数组成的序列 A (A1,A2,A3,....,Av)。这个序列的长度为N判断是否存在一个偶数可以表示为在A中两个不同元素的和。若存在,找到最大的偶数,否则输出”-…...

QT 实现两款自定义的温度计/湿度控件

文章目录 0 引入1、带有标尺的温度/湿度计控件1.头文件2.核心代码 2、竖起来的温度/湿度计控件1.头文件2.实现 3、引用 0 引入 QT原生控件没有实现如仪表盘或者温度计的控件,只好自己实现,文章代码部分参考引用的文章。直接上图 图一 带有标尺的温度计…...

Fourier分析导论——第4章——Fourier级数的一些应用(E.M. Stein R. Shakarchi)

第 4 章 傅里叶级数的一些应用 Fourier series and analogous expansions intervene very naturally in the general theory of curves and surfaces. In effect, this theory, conceived from the point of view of analysis, deals obviously with the study of arbitra…...

c语言使用fdk_aac库对aac音频解码为pcm

//示例为adts的aac流数据&#xff08;adts数据可以每一包都可以独立解析不需要拼凑&#xff09; //解码数据的采样率同解码前的采样率&#xff0c;如果不满足需求&#xff0c;需要对数据进行重采样 #include <aacdecoder_lib.h>int m_fd -1; int m_fd2 -1;void aac2pc…...

zustand管理工具--React

npm i zustand 1.函数参数必须返回一个对象 对象内部编写状态数据和方法 2.set是用来修改数据的专门方法必须调用它来修改数据 import { useEffect } from "react"; import { create } from "zustand";// 1. 创建store const goodsStore create((set) …...

Elasticsearch内存分析

文章目录 Elasticsearch JVM内存由哪些部分组成Indexing BufferNode Query CacheShard Request CacheField Data CacheSegments Cache查询 非堆内存内存压力mat分析es的jvm缓存监控 Elasticsearch JVM内存由哪些部分组成 官方建议Elasticsearch设置堆内存为32G&#xff0c;因为…...

Alert警告提示(antd-design组件库)简单使用

1.Alert警告提示 警告提示&#xff0c;展现需要关注的信息。 2.何时使用 当某个页面需要向用户显示警告的信息时。 非浮层的静态展现形式&#xff0c;始终展现&#xff0c;不会自动消失&#xff0c;用户可以点击关闭。 组件代码来自&#xff1a; 警告提示 Alert - Ant Design 3…...

Linux提权方法总结

1、内核漏洞提权 利用内核漏洞提取一般三个环节&#xff1a;首先对目标系统进行信息收集&#xff0c;获取系统内核信息及版本信息 第二步&#xff0c;根据内核版本获取对应的漏洞以及exp 第三步&#xff0c;使用exp对目标进行攻击&#xff0c;完成提权 注&#xff1a;此处可…...

力扣第300题 最长递增子序列 c++ 动态规划题 附Java代码

题目 300. 最长递增子序列 中等 相关标签 数组 二分查找 动态规划 给你一个整数数组 nums &#xff0c;找到其中最长严格递增子序列的长度。 子序列 是由数组派生而来的序列&#xff0c;删除&#xff08;或不删除&#xff09;数组中的元素而不改变其余元素的顺序。例…...

Si3262 集成低功耗SOC 三合一智能门锁应用芯片

Si3262 是一款G度集成的低功耗 SOC 芯片&#xff0c;其集成了基于 RISC-V 核的低功耗MCU 和工作在 13.56MHz 的非接触式读写器模块。 读写器模块支持 ISO/IEC 14443 A/B/MIFARE 协议&#xff0c;支持自动载波侦测功能&#xff08;ACD&#xff09;。无需外W其他电路&#xff0c;…...

linux rsyslog介绍

Rsyslog网址&#xff1a;https://www.rsyslog.com/ Rsyslog is the rocket-fast system for log processing. It offers high-performance, great security features and a modular design. While it started as a regular syslogd, rsyslog has evolved into a kind of swis…...

项目部署之安装和配置Canal

1.Canal介绍 Canal是阿里巴巴的一个开源项目&#xff0c;基于java实现&#xff0c;整体已经在很多大型的互联网项目生产环境中使用&#xff0c;包括阿里、美团等都有广泛的应用&#xff0c;是一个非常成熟的数据库同步方案&#xff0c;基础的使用只需要进行简单的配置即可。 …...

基于Skywalking的全链路跟踪实现

在前文“分布式应用全链路跟踪实现”中介绍了分布式应用全链路跟踪的几种实现方法&#xff0c;本文将重点介绍基于Skywalking的全链路实现&#xff0c;包括Skywalking的整体架构和基本概念原理、Skywalking环境部署、SpringBoot和Python集成Skywalking监控实现等。 1、Skywalki…...

Spark Core

Spark Core 本文来自 B站 黑马程序员 - Spark教程 &#xff1a;原地址 第一章 RDD详解 1.1 为什么需要RDD 分布式计算需要 分区控制shuffle控制数据存储、序列化、发送数据计算API等一系列功能 这些功能&#xff0c;不能简单的通过Python内置的本地集合对象&#xff08;如…...

[算法日志]图论: 广度优先搜索(BFS)

[算法日志]图论&#xff1a; 广度优先搜索(BFS) 广度优先概论 ​ 广度优先遍历也是一种常用的遍历图的算法策略&#xff0c;其思想是将本节点相关联的节点都遍历一遍后才切换到相关联节点重复本操作。这种遍历方式类似于对二叉树节点的层序遍历&#xff0c;即先遍历完子节点后…...

Xilinx FPGA SPIx4 配置速度50M约束语句(Vivado开发环境)

qspi_50m.xdc文件&#xff1a; set_property BITSTREAM.GENERAL.COMPRESS TRUE [current_design] set_property BITSTREAM.CONFIG.SPI_BUSWIDTH 4 [current_design] set_property BITSTREAM.CONFIG.CONFIGRATE 50 [current_design] set_property CONFIG_VOLTAGE 3.3 [curren…...

Linux Shell和权限

目录 Shell命令及运行原理 权限 1.文件基本属性 2.文件权限值的表示方法 3.文件访问权限的相关设置方法 3.(1)chmod 组名修改 3.(2)chmod 二进制修改 3.(3)chown 3.(4)chgrp 3.(5)umask 4.目录权限 Shell命令及运行原理 Linux的操作系统&#xff0c;狭义上是…...

Git同时配置Gitee和GitHub

Git同时配置Gitee和GitHub 一、删除原先ssh密钥二、生成密钥 这里的同时配置是针对于之前配置过单个gitee或者github而言的&#xff0c;如果需要看git从安装开始的配置&#xff0c;则可以看这一篇文章 git安装配置教程 一、删除原先ssh密钥 在C盘下用户/用户名/.ssh文件下找到…...

IGP高级特性简要介绍(OSPF-上篇)

OSPF高级特性 一、OSPF_提升故障收敛及网络恢复速度 1.FRR与BFD快速恢复故障 1.1 FRR 在传统转发模式下&#xff0c;当到达同一个目的网络存在多条路由时&#xff0c;路由器总是选择最优路由使用&#xff0c;并且下发到FIB表指导数据转发。 当最优路由故障时&#xff0c;需…...

Python|GIF 解析与构建(5):手搓截屏和帧率控制

目录 Python&#xff5c;GIF 解析与构建&#xff08;5&#xff09;&#xff1a;手搓截屏和帧率控制 一、引言 二、技术实现&#xff1a;手搓截屏模块 2.1 核心原理 2.2 代码解析&#xff1a;ScreenshotData类 2.2.1 截图函数&#xff1a;capture_screen 三、技术实现&…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06&#xff08;十亿美元&#xff09;。漏洞扫描服务市场行业预计将从 2024 年的 3.48&#xff08;十亿美元&#xff09;增长到 2032 年的 9.54&#xff08;十亿美元&#xff09;。预测期内漏洞扫描服务市场 CAGR&#xff08;增长率&…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...