当前位置: 首页 > news >正文

2023年辽宁省数学建模竞赛B题数据驱动的水下导航适配区分类预测

2023年辽宁省数学建模竞赛

B题 数据驱动的水下导航适配区分类预测

原题再现:

  “海洋强国”战略部署已成为推动中国现代化建设的重要组成部分,国家对此提出“发展海洋经济,保护海洋生态环境,加快建设海洋强国”的明确要求。
  《辽宁省“十四五”海洋经济发展规划》明确未来全省海洋经济的发展战略、发展目标、重大任务、空间部署和保障措施。规划范围包括辽宁省全部海域和大连、丹东、锦州、营口、盘锦和葫芦岛 6 个市以及海洋经济发展所依托的相关陆域,规划期限为 2021 年至 2025 年,展望到 2035 年。辽宁省作为中国最北沿海省份,拥有 2292.4 公里海岸线(如图 1 所示)。
  在“海洋强省”建设目标的背景下,完成海洋经济发展规划的目标重在海洋高新技术领域创新。其中关键核心技术之一是攻克水下导航与定位的适配区分类预测技术。
在这里插入图片描述
  水下航行器在执行水下任务时需要保持自主、无源、高隐蔽性、不受地域和时域限制、高精度的导航与定位。重力辅助导航是满足上述条件的主要方法之一。
  在重力辅助导航系统中,影响导航可靠性与精度的关键步骤是选择匹配性高的航行区域,即适配区。适配区的标定与识别技术是最具挑战性的问题之一。选取适配区前需要对研究海域的重力基准图(基础性的是重力异常基准图)进行插值加密处理,基于重力基准图所提供水下航行器航行区域的重力异常变化情况对适配区的选取进行分析。
  重力异常(值)的定义为:实际地球内部的物质密度分布不均匀,导致实际观测重力值与理论上的正常重力值总存在偏差,在排除各种干扰因素影响后,仅仅由地球物质密度分布不匀所引起的重力的变化,简称为重力异常。
  在重力异常变化显著区域,导航系统可获得高的定位精度;反之,在重力异常变化平坦区域,导航系统会出现定位精度的不敏感。由于不同区域的重力异常特征分布不同,建立可行的适配区分类预测模型,对保障水下航行器的导航精度至关重要。
  假设X为影响区域匹配性的特征属性指标,Y为刻画区域适配性的输出结果, F为以X为输入以Y为输出的分类预测系统。
  基于上述背景分析,请参考附件中的重力异常数据建立数学模型,解决以下问题:
  问题一:附件 1,给出一组分辨率为 1’×1’(相邻两格网点间的距离是 1’)的重力异常基准数据 A,试通过精细化基准图,合理划分区域,完成各区域的适配性标定(标签Y)。
  问题二:根据问题一中各划分区域的适配性标定结果Y ,合理选择区域的特征属性指标(特征X),试建立有效的区域适配区分类预测模型(系统F)。
  问题三:利用附件二中的重力异常基准数据 B,试对问题二所建立的系统F进行迁移性预测并讨论该系统F对新重力异常数据的适用性。
  附件
  附件 1:重力异常基准数据 A
  附件 2:重力异常基准数据 B

代码实例

from sklearn import datasets
#朴素贝叶斯from sklearn.naive_bayes import GaussianNB
from sklearn.naive_bayes import MultinomialNB
from sklearn.naive_bayes import BernoulliNB
#SVM
from sklearn.svm import SVC
#KNN
from sklearn.neighbors import KNeighborsClassifier
#数据集分割
from sklearn.model_selection import train_test_splitcancers=datasets.load_breast_cancer()
X=cancers.data
Y=cancers.target
# 注意返回值: 训练集train,x_train,y_train,测试集test,x_test,y_test
# x_train为训练集的特征值,y_train为训练集的目标值,x_test为测试集的特征值,y_test为测试集的目标值
# 注意,接收参数的顺序固定
# 训练集占80%,测试集占20%
#此处是将数据集拆分为训练集和测试集
x_train,x_test,y_train,y_test=train_test_split(X, Y, test_size=0.2)
#朴素贝叶斯
#高斯贝叶斯分类器
model_linear =GaussianNB()
model_linear.fit(x_train, y_train)
train_score = model_linear.score(x_train, y_train)
test_score = model_linear.score(x_test, y_test)
print('高斯贝叶斯训练集的准确率:%.3f; 测试集的准确率:%.3f'%(train_score, test_score))
preresult=model_linear.predict(x_test)
print(preresult)
#多项式贝叶斯分类器
model_linear =MultinomialNB()
model_linear.fit(x_train, y_train)
train_score = model_linear.score(x_train, y_train)
test_score = model_linear.score(x_test, y_test)
print('多项式贝叶斯训练集的准确率:%.3f; 测试集的准确率:%.3f'%(train_score, test_score))
preresult=model_linear.predict(x_test)
print(preresult)
#伯努利贝叶斯分类器
model_linear=BernoulliNB()
model_linear.fit(x_train, y_train)
train_score = model_linear.score(x_train, y_train)
test_score = model_linear.score(x_test, y_test)
print('伯努利贝叶斯训练集的准确率:%.3f; 测试集的准确率:%.3f'%(train_score, test_score))
preresult=model_linear.predict(x_test)
print(preresult)
#SVM法model_linear = SVC(C=1.0, kernel='linear')  # 线性核
model_linear.fit(x_train, y_train)
train_score = model_linear.score(x_train, y_train)
test_score = model_linear.score(x_test, y_test)
print('SVM法训练集的准确率:%.3f; 测试集的准确率:%.3f'%(train_score, test_score))
preresult=model_linear.predict(x_test)
print(preresult)
#KNN法
model_linear =KNeighborsClassifier(n_neighbors=15)
model_linear.fit(x_train, y_train)
train_score = model_linear.score(x_train, y_train)
test_score = model_linear.score(x_test, y_test)
print('KNN法训练集的准确率:%.3f; 测试集的准确率:%.3f'%(train_score, test_score))
preresult=model_linear.predict(x_test)
print(preresult)

相关文章:

2023年辽宁省数学建模竞赛B题数据驱动的水下导航适配区分类预测

2023年辽宁省数学建模竞赛 B题 数据驱动的水下导航适配区分类预测 原题再现: “海洋强国”战略部署已成为推动中国现代化建设的重要组成部分,国家对此提出“发展海洋经济,保护海洋生态环境,加快建设海洋强国”的明确要求。   …...

完蛋!百融云被大阳线包围了!

没想到让AI指数爬出底部的,不是离婚的两口子承诺不减持了,而是国产游戏圈神作《完蛋!我被女友包围了》。确实,资本市场不相信眼泪,AI的涨跌也与爱情无关。 之前有一个来自美国和澳大利亚的大数据团队做过一个有趣的统…...

数据结构 编程1年新手视角的平衡二叉树AVL从C与C++实现③

对应地,我们可以将insert函数中省略的操作补上 if(getBalance(node)2){ if(getBalance(node->left)1){ noderightRotate(node); //对应LL型 } else if(getBalance(node->left)-1{ node->left leftRotate(node->left); //对应LR型 noderightRotate(n…...

数据可视化PCA与t-SNE

PCA(主成分分析)和t-SNE(t分布随机近邻嵌入)都是降维技术,可以用于数据的可视化和特征提取。 降维:把数据或特征的维数降低,其基本作用包括: 提高样本密度,以及使基于欧…...

Kubernetes rancher、prometheus、ELK的安装

目录 一、rancher的安装1. 添加 Helm Chart 仓库2. 为 Rancher 创建命名空间3. 选择 SSL 配置4. 安装 cert-manager 二、prometheus安装三、EFK安装3.1安装elasticsearch3.2安装filebeat3.3安装kibana 一、rancher的安装 有关rancher的安装其实官方网站给的步骤已经很详细了&a…...

为什么我们要努力的学习编程?初学编程从哪里开始学起?

为什么我们要努力的学习编程?初学编程从哪里开始学起? 1、不论在哪里上班,都不是铁饭碗:现在全球经济低迷,使得很多企业倒闭,大到知名国企小到私营企业,大量裁员。任何人都无法保证自己现在的工…...

ffmpeg 从内存中读取数据(或将数据输出到内存)

1.为了使本文更通俗易懂,更新了部分内容,将例子改为从内存中打开。 2.增加了将数据输出到内存的方法。 从内存中读取数据 ffmpeg一般情况下支持打开一个本地文件,例如“C:\test.avi” 或者是一个流媒体协议的URL,例如“rtmp:/…...

Flink(一)【WordCount 快速入门】

前言 学完了 Hadoop、Spark,本想着先把 Kafka、Flume 这些工具先学完的,但想了想还是把核心的技术先学完最后再去把那些工具学学。 最近心有点累哈哈哈,偷偷立个 flag,反正也没人看,明年的今天来这里还愿哈&#xff0c…...

【Redis】hash数据类型-常用命令

文章目录 前置知识常用命令HSETHGETHEXISTSHDELHKEYSHVALSHGETALLHMGET关于HMSETHLENHSETNXHINCRBYHINCRBYFLOAT 命令小结 前置知识 redis自身就是键值对结构了,哈希类型是指值本⾝⼜是⼀个键值对结构,形如key"key",value{{field1…...

【大数据】Apache NiFi 数据同步流程实践

Apache NiFi 数据同步流程实践 1.环境2.Apache NIFI 部署2.1 获取安装包2.2 部署 Apache NIFI 3.NIFI 在手,跟我走!3.1 准备表结构和数据3.2 新建一个 Process Group3.3 新建一个 GenerateTableFetch 组件3.4 配置 GenerateTableFetch 组件3.5 配置 DBCP…...

git怎么使用 拉取代码

废话不多说 直接开干 Git 是一款十分实用的版本控制工具,非常方便地管理代码的变更。但是,在使用 Git 过程中,不可避免地会遇到一些问题。其中,删除分支是一个常见的问题。 查看引用历史记录: git reflog找到你删除的…...

Apple :苹果将在明年年底推出自己的 AI,预计将随 iOS 18 一起推出

本心、输入输出、结果 文章目录 Apple :苹果将在明年年底推出自己的 AI,预计将随 iOS 18 一起推出前言三星声称库克相关图片弘扬爱国精神 Apple :苹果将在明年年底推出自己的 AI,预计将随 iOS 18 一起推出 编辑:简简单…...

数据结构-双向链表

1.带头双向循环链表: 前面我们已经知道了链表的结构有8种,我们主要学习下面两种: 前面我们已经学习了无头单向非循环链表,今天我们来学习带头双向循环链表: 带头双向循环链表:结构最复杂,一般用…...

CV计算机视觉每日开源代码Paper with code速览-2023.11.6

精华置顶 墙裂推荐!小白如何1个月系统学习CV核心知识:链接 点击CV计算机视觉,关注更多CV干货 论文已打包,点击进入—>下载界面 点击加入—>CV计算机视觉交流群 1.【点云3D目标检测】(NeurIPS2023)…...

GB28181学习(十五)——流传输方式

前言 基于GB/T28181-2022版本,实时流的传输方式包括3种: UDPTCP被动TCP主动 UDP 流程 注意: m字段指定传输方式为RTP/AVP; 抓包 SIP服务器发送INVITE请求; INVITE sip:xxx192.168.0.111:5060 SIP/2.0 Via: SIP…...

【Linux】:初识git || centos下安装git || 创建本地仓库 || 配置本地仓库 || 认识工作区/暂存区(索引)以及版本库

📮1.初识git Git 原理与使用 课程⽬标 • 技术⽬标:掌握Git企业级应⽤,深刻理解Git操作过程与操作原理,理解⼯作区,暂存区,版本库的含义 • 技术⽬标:掌握Git版本管理,⾃由进⾏版本回退、撤销、修改等Git操…...

Vue 3 中,watch 和 watchEffect 的区别

结论先行: watch 和 watchEffect 都是监听器,都是用来监听响应式数据的变化并执行相应操作。区别是: watch:需要指明要监听的数据,而且在回调函数中可以获取到属性变化的前后值; 适用于需要精确控制监视…...

鲜花展示服务预约小程序的效果如何

鲜花产品的市场需求度非常高,互联网深入各个行业,很多鲜花商家都会通过线上建立平台实现产品销售、获客引流、转化复购、生意增长等,当然除了搭建鲜花商城小程序外,对鲜花供应商及门店还有展示预约方面的需求。 通过【雨科】平台可…...

Linux下多个盘符乱的问题处理

参考文档: linux下man fstab命令查看帮助,有一段说明,可以使用UUID,或者LABEL 来绑定盘。这里使用UUID来绑定 Instead of giving the device explicitly, one may indicate the filesystem that is to be mounted by its UUID …...

uniapp小程序使用web-view组件页面分享后,点击没有home小房子解决办法

uniapp小程序使用web-view组件页面分享后,点击没有home小房子解决办法 小程序 :IOS 测试正常, 安卓 不显示home 微信小程序使用的是全局自定义导航,通过首页 banner 跳转到一个 web-view 页面,展示官网。 web-view 页…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.

ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #&#xff1a…...

Spring AI Chat Memory 实战指南:Local 与 JDBC 存储集成

一个面向 Java 开发者的 Sring-Ai 示例工程项目,该项目是一个 Spring AI 快速入门的样例工程项目,旨在通过一些小的案例展示 Spring AI 框架的核心功能和使用方法。 项目采用模块化设计,每个模块都专注于特定的功能领域,便于学习和…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案

在大数据时代,海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构,在处理大规模数据抓取任务时展现出强大的能力。然而,随着业务规模的不断扩大和数据抓取需求的日益复杂,传统…...

Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践

在 Kubernetes 集群中,如何在保障应用高可用的同时有效地管理资源,一直是运维人员和开发者关注的重点。随着微服务架构的普及,集群内各个服务的负载波动日趋明显,传统的手动扩缩容方式已无法满足实时性和弹性需求。 Cluster Auto…...

CppCon 2015 学习:Time Programming Fundamentals

Civil Time 公历时间 特点: 共 6 个字段: Year(年)Month(月)Day(日)Hour(小时)Minute(分钟)Second(秒) 表示…...

[拓扑优化] 1.概述

常见的拓扑优化方法有:均匀化法、变密度法、渐进结构优化法、水平集法、移动可变形组件法等。 常见的数值计算方法有:有限元法、有限差分法、边界元法、离散元法、无网格法、扩展有限元法、等几何分析等。 将上述数值计算方法与拓扑优化方法结合&#…...

Copilot for Xcode (iOS的 AI辅助编程)

Copilot for Xcode 简介Copilot下载与安装 体验环境要求下载最新的安装包安装登录系统权限设置 AI辅助编程生成注释代码补全简单需求代码生成辅助编程行间代码生成注释联想 代码生成 总结 简介 尝试使用了Copilot,它能根据上下文补全代码,快速生成常用…...