当前位置: 首页 > news >正文

pytorch中常用的损失函数

1 损失函数的作用

损失函数是模型训练的基础,并且在大多数机器学习项目中,如果没有损失函数,就无法驱动模型做出正确的预测。 通俗地说,损失函数是一种数学函数或表达式,用于衡量模型在某些数据集上的表现。损失函数在深度学习主要作用如下:

  • 衡量模型性能:损失函数用于评估模型的预测结果与真实结果之间的误差程度。较小的损失值表示模型的预测结果与真实结果更接近,反之则表示误差较大。因此,损失函数提供了一种度量模型性能的方式。
  • 参数优化:在训练机器学习和深度学习模型时,损失函数被用作优化算法的目标函数。通过最小化损失函数,可以调整模型的参数,使模型能够更好地逼近真实结果。
  • 反向传播:在深度学习中,通过反向传播算法计算损失函数对模型参数的梯度。这些梯度被用于参数更新,以便优化模型。损失函数在反向传播中扮演着重要的角色,指导参数的调整方向。
  • 防止过拟合:过拟合是指模型在训练数据上表现良好,但在新数据上表现较差的现象。损失函数可以帮助在训练过程中监控模型的过拟合情况。通过观察训练集和验证集上的损失,可以及早发现模型是否过拟合,从而采取相应的措施,如正则化等。

2 pytorch中常见的损失函数

损失函数名称适用场景
torch.nn.MSELoss()均方误差损失回归
torch.nn.L1Loss()平均绝对值误差损失回归
torch.nn.CrossEntropyLoss()交叉熵损失多分类
torch.nn.NLLLoss()负对数似然函数损失多分类
torch.nn.NLLLoss2d()图片负对数似然函数损失图像分割
torch.nn.KLDivLoss()KL散度损失回归
torch.nn.BCELoss()二分类交叉熵损失二分类
torch.nn.MarginRankingLoss()评价相似度的损失
torch.nn.MultiLabelMarginLoss()多标签分类的损失多标签分类
torch.nn.SmoothL1Loss()平滑的L1损失回归
torch.nn.SoftMarginLoss()多标签二分类问题的损失

多标签二分类

2.1 L1损失函数

预测值与标签值进行相差,然后取绝对值,根据实际应用场所,可以设置是否求和,求平均,公式可见下,Pytorch调用函数:nn.L1Loss

import torch
import torch.nn as nnLoss_fn = nn.L1Loss(size_average=None, reduce=None, reduction='mean')input = torch.randn(3, 5, requires_grad=True)
target = torch.randn(3, 5)
output = Loss_fn(input, target)
print(output)

运行结果显示如下:

tensor(1.4177, grad_fn=<MeanBackward0>)

2.2 L2损失函数

预测值与标签值进行相差,然后取平方,根据实际应用场所,可以设置是否求和,求平均,公式可见下,Pytorch调用函数:nn.MSELoss

import torch.nn as nn
import torchloss = nn.MSELoss(size_average=None, reduce=None, reduction='mean')input = torch.randn(3, 5, requires_grad=True)
target = torch.randn(3, 5)
output = loss(input, target)
print(output)

运行结果显示如下:

tensor(1.7956, grad_fn=<MseLossBackward0>)

2.3 Huber Loss损失函数

简单来说就是L1和L2损失函数的综合版本,结合了两者的优点,公式可见下,Pytorch调用函数:nn.SmoothL1Loss

import matplotlib.pyplot as plt
import torch# 定义函数和参数
smooth_l1_loss = nn.SmoothL1Loss(reduction='none')
x = torch.linspace(-1, 1, 10000)
y = smooth_l1_loss(torch.zeros(10000), x)# 绘制图像
plt.plot(x, y)
plt.xlabel('x')
plt.ylabel('SmoothL1Loss')
plt.title('SmoothL1Loss Function')
plt.show()

 运行结果显示如下:

2.4 二分类交叉熵损失函数

简单来说,就是度量两个概率分布间的差异性信息,在某一程度上也可以防止梯度学习过慢,公式可见下,Pytorch调用函数有两个,一个是nn.BCELoss函数,用的时候要结合Sigmoid函数,另外一个是nn.BCEWithLogitsLoss()

import torch.nn as nn
import torchm = nn.Sigmoid()
loss = nn.BCELoss()
input = torch.randn(3, requires_grad=True)
target = torch.empty(3).random_(2)
output = loss(m(input), target)
print(output)

运行结果显示如下:

tensor(0.6214, grad_fn=<BinaryCrossEntropyBackward0>)
import torch
import torch.nn as nnlabel = torch.empty((2, 3)).random_(2)
x = torch.randn((2, 3), requires_grad=True)bce_with_logits_loss = nn.BCEWithLogitsLoss()
output = bce_with_logits_loss(x, label)print(output)

 运行结果显示如下:

tensor(0.7346, grad_fn=<BinaryCrossEntropyWithLogitsBackward0>)

2.5 多分类交叉熵损失函数

也是度量两个概率分布间的差异性信息,Pytorch调用函数也有两个,一个是nn.NLLLoss,用的时候要结合log softmax处理,另外一个是nn.CrossEntropyLoss

import torch
import torch.nn.functional as Finput = torch.randn(3, 5, requires_grad=True)
target = torch.tensor([1, 0, 4])
output = F.nll_loss(F.log_softmax(input, dim=1), target)
print(output)

运行结果显示如下:

tensor(2.9503, grad_fn=<NllLossBackward0>)
import torch
import torch.nn as nnloss = nn.CrossEntropyLoss()
inputs = torch.randn(3, 5, requires_grad=True)
target = torch.empty(3, dtype=torch.long).random_(5)
output = loss(inputs, target)print(output)

运行结果显示如下:

tensor(1.6307, grad_fn=<NllLossBackward0>)

2.6 自定义损失

通过对 nn 模块进行子类化,将损失函数创建为神经网络图中的节点。 这意味着我们的自定义损失函数是一个 PyTorch 层,与卷积层完全相同。

class Custom_MSE(nn.Module):def __init__(self):super(Custom_MSE, self).__init__();def forward(self, predictions, target):square_difference = torch.square(predictions - target)loss_value = torch.mean(square_difference)return loss_value# def __call__(self, predictions, target):#   square_difference = torch.square(y_predictions - target)#   loss_value = torch.mean(square_difference)#   return loss_value

可以在“forward”函数调用或“call”内部定义损失的实际实现。

3 总结

损失函数在人工智能领域中起着至关重要的作用,它不仅是模型训练和优化的基础,也是评估模型性能、解决过拟合问题以及指导模型选择的重要工具。不同的损失函数适用于不同的问题和算法,选择合适的损失函数对于取得良好的模型性能至关重要。

相关文章:

pytorch中常用的损失函数

1 损失函数的作用 损失函数是模型训练的基础&#xff0c;并且在大多数机器学习项目中&#xff0c;如果没有损失函数&#xff0c;就无法驱动模型做出正确的预测。 通俗地说&#xff0c;损失函数是一种数学函数或表达式&#xff0c;用于衡量模型在某些数据集上的表现。损失函数在…...

申克SCHENCK动平衡机显示器维修CAB700系统控制面板

适用电枢转子的卧式平衡机&#xff0c;高测量率&#xff0c;自动测量循环&#xff0c;自动定标完整的切槽计数可选项&#xff0c;CAB700动平衡测量系统两种皮带驱动方式(上置式或下置式)适用于站立或坐姿操作的人性化工作台设计。 动平衡机申克控制器面板维修型号&#xff1a;V…...

【论文阅读】PSDF Fusion:用于动态 3D 数据融合和场景重建的概率符号距离函数

【论文阅读】PSDF Fusion&#xff1a;用于动态 3D 数据融合和场景重建的概率符号距离函数 Abstract1 Introduction3 Overview3.1 Hybrid Data Structure3.2 3D Representations3.3 Pipeline 4 PSDF Fusion and Surface Reconstruction4.1 PSDF Fusion4.2 Inlier Ratio Evaluati…...

React 测试笔记 03 - 测试 Redux 中 Reducer 状态变化

React 测试笔记 03 - 测试 Redux 中 Reducer 状态变化 这段时间都在重构代码&#xff0c;把本来奇奇怪怪(singleton)的实现改成用 redux 的实现&#xff0c;然后就突然想到……即然 redux 的改变不涉及到 UI 的改变&#xff0c;那么是不是说可以单独写 redux 的测试……&#…...

xilinx primitives(原语)

Xilinx的原语分为10类&#xff0c;包括&#xff1a;计算组件&#xff0c;IO端口组件&#xff0c;寄存器/锁存器&#xff0c;时钟组件&#xff0c;处理器组件&#xff0c;移位寄存器&#xff0c;配置和检测组件&#xff0c;RAM/ROM组件&#xff0c;Slice/CLB组件&#xff0c;G-t…...

机器学习 - DBSCAN聚类算法:技术与实战全解析

目录 一、简介DBSCAN算法的定义和背景聚类的重要性和应用领域DBSCAN与其他聚类算法的比较 二、理论基础密度的概念核心点、边界点和噪声点DBSCAN算法流程邻域的查询聚类的形成过程 参数选择的影响 三、算法参数eps&#xff08;邻域半径&#xff09;举例说明&#xff1a;如何选择…...

kafka微服务学习

消息中间件对比&#xff1a; 1、吞吐、可靠性、性能 Kafka安装 Kafka对于zookeeper是强依赖&#xff0c;保存kafka相关的节点数据&#xff0c;所以安装Kafka之前必须先安装zookeeper Docker安装zookeeper 下载镜像&#xff1a; docker pull zookeeper:3.4.14创建容器 do…...

5G网络切片,到底是什么?

网络切片&#xff0c;是5G引入的一个全新概念。 一看到切片&#xff0c;首先想到的&#xff0c;必然是把一个完整的东西切成薄片。于是&#xff0c;切面包或者切西瓜这样的画面&#xff0c;映入脑海。 添加图片注释&#xff0c;不超过 140 字&#xff08;可选&#xff09; 然而…...

linux安装nodejs

写在前面 因为工作需要&#xff0c;需要使用到nodejs&#xff0c;所以这里简单记录下学习过程。 1&#xff1a;安装 wget https://nodejs.org/dist/v14.17.4/node-v14.17.4-linux-x64.tar.xz tar xf node-v14.17.4-linux-x64.tar.xz mkdir /usr/local/lib/node // 这一步骤根…...

第1天:Python基础语法(一)

** 1、Python简介 ** Python是一种高级、通用的编程语言&#xff0c;由Guido van Rossum于1989年创造。它被设计为易于阅读和理解&#xff0c;具有简洁而清晰的语法&#xff0c;使得初学者和专业开发人员都能够轻松上手。 Python拥有丰富的标准库&#xff0c;提供了广泛的功…...

ppt聚光灯效果

1.放入三张图片内容或其他 2.全选复制成图片 3.设置黑色矩形&#xff0c;透明度30% 4.粘贴复制后的图片&#xff0c;制定图层 5.插入椭圆&#xff0c;先选中矩形&#xff0c;再选中椭圆&#xff0c;点击绘图工具&#xff0c;选择相交即可&#xff08;关键&#xff09;...

图文解析 Nacos 配置中心的实现

目录 一、什么是 Nacos 二、配置中心的架构 三、Nacos 使用示例 &#xff08;一&#xff09;官方代码示例 &#xff08;二&#xff09;Properties 解读 &#xff08;三&#xff09;配置项的层级设计 &#xff08;四&#xff09;获取配置 &#xff08;五&#xff09;注册…...

P1918 保龄球

Portal. 记录每一个瓶子数对应的位置即可。 注意到值域很大&#xff08; a i ≤ 1 0 9 a_i\leq 10^9 ai​≤109&#xff09;&#xff0c;要用 map 存储。 #include <bits/stdc.h> using namespace std;map<int,int> p;int main() {int n;cin>>n;for(int i…...

SAP-PP-报错:工作中心 7333_JQ 工厂 7331 对任务清单类型 N 不存在

创建工艺路线时报错&#xff1a;工作中心 7333_JQ 工厂 7331 对任务清单类型 N 不存在&#xff0c; 这是因为在创建工作中心时未维护控制键值导致的...

MySQL -- 用户管理

MySQL – 用户管理 文章目录 MySQL -- 用户管理一、用户1.用户信息2.创建用户3.删除用户4.远端登录MySQL5.修改用户密码6.数据库的权限 一、用户 1.用户信息 MySQL中的用户&#xff0c;都存储在系统数据库mysql的user表中&#xff1a; host&#xff1a; 表示这个用户可以从…...

IOS浏览器不支持对element ui table的宽度设置百分比

IOS浏览器不支持对element ui table的宽度设置百分比 IOS浏览器会把百分号识别成px&#xff0c;所以我们可以根据屏幕宽度将百分比转换成px getColumnWidth(data) {const screenWidth window.innerWidth;const desiredPercentage data;const widthInPixels (screenWidth *…...

Vue+OpenLayers 创建地图并显示鼠标所在经纬度

1、效果 2、创建地图 本文用的是高德地图 页面 <div class"map" id"map"></div><div id"mouse-position" class"position_coordinate"></div>初始化地图 var gaodeLayer new TileLayer({title: "高德地…...

01-编码-H264编码原理

1.整体概念 编码的含义就是压缩,将摄像头采集的YUV或RGB数据压缩成H264。 压缩的过程就是去除信息冗余的过程,一般视频有如下的冗余信息。 (1)空间冗余:在同一个画面中,相邻的像素点之间的变化很小,因而可以用一个特定大小的矩阵来描述相邻的这些像素。 (2)时间冗余:…...

RxJava/RxAndroid的操作符使用(二)

文章目录 一、创建操作1、基本创建2、快速创建2.1 empty2.2 never2.3 error2.4 from2.5 just 3、定时与延时创建操作3.1 defer3.2 timer3.3 interval3.4 intervalRange3.5 range3.6 repeat 二、过滤操作1、skip/skipLast2、debounce3、distinct——去重4、elementAt——获取指定…...

【C语法学习】20 - 文件访问顺序

文章目录 0 前言1 文件位置指示符2 rewind()函数2.1 函数原型2.2 参数2.3 返回值2.4 使用说明 3 ftell()函数3.1 函数原型3.2 参数3.3 返回值 4 fseek()函数4.1 函数原型4.2 参数4.3 返回值 5 示例5.1 示例15.2 示例2 0 前言 C语言文件访问分为顺序文件访问和随机文件访问。 …...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹&#xff0c;并新增内容 3.创建package文件夹...

React19源码系列之 事件插件系统

事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 在 GPU 上对图像执行 均值漂移滤波&#xff08;Mean Shift Filtering&#xff09;&#xff0c;用于图像分割或平滑处理。 该函数将输入图像中的…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架&#xff0c;允许使用简单的变成模型跨计算机对大型集群进行分布式处理&#xff08;1.海量的数据存储 2.海量数据的计算&#xff09;Hadoop核心组件 hdfs&#xff08;分布式文件存储系统&#xff09;&a…...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发&#xff0c;其初衷是为了满足他自己的一个项目需求&#xff0c;即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源&#xff0c;Redis凭借其简单易用、…...