当前位置: 首页 > news >正文

深度学习(生成式模型)——Classifier Free Guidance Diffusion

文章目录

  • 前言
  • 推导流程
  • 训练流程
  • 测试流程

前言

在上一节中,我们总结了Classifier Guidance Diffusion,其有两个弊端,一是需要额外训练一个分类头,引入了额外的训练开销。二是要噪声图像通常难以分类,分类头通常难以学习,影响生成图像的质量。

Classifier Free Guidance Diffusion解决了上述两个弊端,不需要引入额外的分类头即可控制图像的生成。

本节所有符号含义与前文一致,请读者阅读完前三篇博文后在查阅此文。

本文仅总结backbone为DDIM情况下的Classifier Free Guidance Diffusion

推导流程

依据前文可知Classifier Guidance Diffusion的前向过程与反向过程与DDPM一致,且有
q ( x t ∣ x t − 1 , y ) = q ( x t ∣ x t − 1 ) q(x_t|x_{t-1},y)=q(x_t|x_{t-1}) q(xtxt1,y)=q(xtxt1)

则有 q ( x t ∣ x 0 , y ) = q ( x t ∣ x 0 ) = N ( x t ; α ˉ t x 0 , ( 1 − α ˉ t ) I ) q(x_t|x_{0},y)=q(x_t|x_0)=\mathcal N(x_t;\sqrt{\bar \alpha_t}x_0,(1-\bar\alpha_t)\mathcal I) q(xtx0,y)=q(xtx0)=N(xt;αˉt x0,(1αˉt)I)

假设目前有一批基于条件 y y y的样本 x t x_t xt ϵ ( x t , t , y ) \epsilon(x_t,t,y) ϵ(xt,t,y)服从标准正态分布,则样本 x t x_t xt将满足
x t = α ˉ t x 0 + 1 − α ˉ t ϵ ( x t , t , y ) (1.0) x_t=\sqrt{\bar \alpha_t}x_0+\sqrt{1-\bar\alpha_t}\epsilon(x_t,t,y)\tag{1.0} xt=αˉt x0+1αˉt ϵ(xt,t,y)(1.0)

依据Tweedie方法,我们有

α ˉ t x 0 = x t + ( 1 − α ˉ t ) ∇ x t log ⁡ p ( x t ∣ y ) \begin{aligned} \sqrt{\bar \alpha_t}x_0=x_t+(1-\bar\alpha_t)\nabla_{x_t}\log p(x_t|y) \end{aligned} αˉt x0=xt+(1αˉt)xtlogp(xty)
进而有
x t = α ˉ t x 0 − ( 1 − α ˉ t ) ∇ x t log ⁡ p ( x t ∣ y ) (1.1) x_t=\sqrt{\bar \alpha_t}x_0-(1-\bar\alpha_t)\nabla_{x_t}\log p(x_t|y)\tag{1.1} xt=αˉt x0(1αˉt)xtlogp(xty)(1.1)

结合式1.0与1.1,则有

∇ x t log ⁡ p ( x t ∣ y ) = − 1 1 − α ˉ t ϵ ( x t , t , y ) (1.2) \nabla_{x_t}\log p(x_t|y)=-\frac{1}{\sqrt{1-\bar\alpha_t}}\epsilon(x_t,t,y)\tag{1.2} xtlogp(xty)=1αˉt 1ϵ(xt,t,y)(1.2)

依据贝叶斯公式,我们有
log ⁡ p ( x t ∣ y ) = log ⁡ p ( y ∣ x t ) + log ⁡ p ( x t ) − log ⁡ p ( y ) ∇ x t log ⁡ p ( y ∣ x t ) = ∇ x t log ⁡ p ( x t ∣ y ) − ∇ x t log ⁡ p ( x t ) + ∇ x t log ⁡ p ( y ) = ∇ x t log ⁡ p ( x t ∣ y ) − ∇ x t log ⁡ p ( x t ) = − 1 1 − α ˉ t ϵ ( x t , t , y ) + 1 1 − α ˉ t ϵ ( x t , t ) (1.3) \begin{aligned} \log p(x_t|y)&=\log p(y|x_t)+\log p(x_t)-\log p(y)\\ \nabla_{x_t}\log p(y|x_t)&=\nabla_{x_t}\log p(x_t|y)-\nabla_{x_t}\log p(x_t)+\nabla_{x_t}\log p(y)\\ &=\nabla_{x_t}\log p(x_t|y)-\nabla_{x_t}\log p(x_t)\\ &=-\frac{1}{\sqrt{1-\bar\alpha_t}}\epsilon(x_t,t,y)+\frac{1}{\sqrt{1-\bar\alpha_t}}\epsilon(x_t,t) \end{aligned}\tag{1.3} logp(xty)xtlogp(yxt)=logp(yxt)+logp(xt)logp(y)=xtlogp(xty)xtlogp(xt)+xtlogp(y)=xtlogp(xty)xtlogp(xt)=1αˉt 1ϵ(xt,t,y)+1αˉt 1ϵ(xt,t)(1.3)

回顾一下backbone为DDIM的Classifier Guidance Diffusion的采样流程
在这里插入图片描述

将式1.3代入,且引入一个超参数 w w w,可得
ϵ ^ = ϵ θ ( x t ) − w 1 − α ˉ t ∇ x t log ⁡ p ( y ∣ x t ) = ϵ θ ( x t ) − w ( ϵ θ ( x t , t ) − ϵ θ ( x t , t , y ) ) = ( 1 − w ) ϵ θ ( x t , t ) + w ϵ θ ( x t , t , y ) (1.4) \begin{aligned} \hat \epsilon &= \epsilon_\theta(x_t)-w\sqrt{1-\bar\alpha_t}\nabla_{x_t}\log p(y|x_t)\\ &=\epsilon_\theta(x_t)-w(\epsilon_\theta(x_t,t)-\epsilon_\theta(x_t,t,y))\\ &=(1-w)\epsilon_\theta(x_t,t)+w\epsilon_\theta(x_t,t,y) \end{aligned}\tag{1.4} ϵ^=ϵθ(xt)w1αˉt xtlogp(yxt)=ϵθ(xt)w(ϵθ(xt,t)ϵθ(xt,t,y))=(1w)ϵθ(xt,t)+wϵθ(xt,t,y)(1.4)

注意到原论文的推导结果为(为了区分,超参数设为 w ^ \hat w w^

ϵ ^ = ( 1 + w ^ ) ϵ θ ( x t , t , y ) − w ^ ϵ θ ( x t , t ) (1.5) \hat \epsilon = (1+\hat w)\epsilon_\theta(x_t,t,y)-\hat w\epsilon_\theta(x_t,t)\tag{1.5} ϵ^=(1+w^)ϵθ(xt,t,y)w^ϵθ(xt,t)(1.5)

式1.5和1.4是一致的,均为 ϵ θ ( x t , t , y ) \epsilon_\theta(x_t,t,y) ϵθ(xt,t,y) ϵ θ ( x t , t ) \epsilon_\theta(x_t,t) ϵθ(xt,t)的加权和,且权重和为1。

训练流程

依据式1.5,我们需要训练两个神经网络 ϵ θ ( x t , t , y ) \epsilon_\theta(x_t,t,y) ϵθ(xt,t,y) ϵ θ ( x t , t ) \epsilon_\theta(x_t,t) ϵθ(xt,t),前者为的输入包含加噪图片 x t x_t xt以及条件 y y y(图像or文字),后者的输入仅包含加噪图像 x t x_t xt。但其实两个神经网络可以共用一个backbone,在训练时,只需要用一定的概率将条件 y y y设置为空即可。

测试流程

Classifier Free Guidance Diffusion的测试流程有两次推断

  • 将条件 y y y空置,得到 ϵ θ ( x t , t ) \epsilon_\theta(x_t,t) ϵθ(xt,t)
  • 输入条件 y y y,得到 ϵ θ ( x t , t , y ) \epsilon_\theta(x_t,t,y) ϵθ(xt,t,y)
  • 利用公式1.5,生成基于条件 y y y的图像

可以看到推断成本多了一倍。

相关文章:

深度学习(生成式模型)——Classifier Free Guidance Diffusion

文章目录 前言推导流程训练流程测试流程 前言 在上一节中,我们总结了Classifier Guidance Diffusion,其有两个弊端,一是需要额外训练一个分类头,引入了额外的训练开销。二是要噪声图像通常难以分类,分类头通常难以学习…...

C语言 每日一题 11.9 day15

数组元素循环右移问题 一个数组A中存有N( > 0)个整数,在不允许使用另外数组的前提下,将每个整数循环向右移M(≥0)个位置,即将A中的数据由(A0​A1⋯AN−1)变换为&…...

STM32F103C8T6第三天:pwm、sg90、超声波、距离感应按键开盖震动开盖蜂鸣器

1. 定时器介绍1(317.21) 软件定时(之前的定时方法)(软件延时)缺点:不精确、占用CPU资源 void Delay500ms() //11.0592MHz {unsigned char i, j, k;_nop_();i 4;j 129;k 119;do{do{while (-…...

栈的顺序存储实现(C语言)(数据结构与算法)

栈的顺序存储实现通常使用数组来完成。实现方法包括定义一个固定大小的数组,以及一个指向栈顶的指针。当元素入栈时,指针加一并将元素存储在相应位置;当元素出栈时,指针减一并返回相应位置的元素。 1. 顺序栈定义 #define MaxSi…...

设计模式 -- 观察者模式

说明 author blog.jellyfishmix.com / JellyfishMIX - githubLICENSE GPL-2.0 定义 观察者模式(Observer Design Pattern) 也被称为发布订阅模式(Publish-Subscribe Design Pattern)。在 GoF 的《设计模式》一书中,它的定义是这样的: Define a one-to-many depe…...

Go RabbitMQ简介 使用

RabbitMQ简介 RabbitMQ 是一个广泛使用的开源消息队列系统,它实现了高级消息队列协议(AMQP)标准,为分布式应用程序提供了强大的消息传递功能。RabbitMQ 是 Erlang 语言编写的,具有高度的可扩展性和可靠性,…...

【面经】Spring框架中用了哪些设计模式

在Spring框架中,主要运用了以下几种设计模式: 工厂模式: Spring beanFactory使用工厂模式在应用程序中管理对象的创建。 通过使用工厂模式,Spring可以将对象的创建与使用分离,降低耦合度。 单例模式: Spr…...

SpringBoot自动配置的原理篇,剖析自动配置原理;实现自定义启动类!附有代码及截图详细讲解

SpringBoot 自动配置 Condition Condition 是在Spring 4.0 增加的条件判断功能,通过这个可以功能可以实现选择性的创建 Bean 操作 思考:SpringBoot是如何知道要创建哪个Bean的?比如SpringBoot是如何知道要创建RedisTemplate的?…...

苹果Ios系统app应用程序开发者如何获取IPA文件签名证书时需要注意什么?

今天呢想和大家介绍介绍苹果App开发者如何获取IPA文件签名证书的步骤和注意事项。对于苹果应用程序开发者而言,获取IPA文件签名证书是发布应用程序至App Store的重要步骤之一。签名证书能够确保应用程序的安全性和可信度,并使其能够在设备上正确运行。 …...

算法通关村第七关-黄金挑战二叉树迭代遍历

大家好我是苏麟 , 今天带来二叉树的迭代遍历 . 二叉树的迭代遍历 前序编列 描述 : 给你二叉树的根节点 root ,返回它节点值的 前序 遍历。 题目 : LeetCode 二叉树的前序遍历 : 144. 二叉树的前序遍历 分析 : 前序遍历是中左右,如果还有左子树就一…...

2023-11-Rust

学习方案:Rust程序设计指南 1、变量和可变性 声明变量:let 变量、const 常量 rust 默认变量一旦声明,就不可变(immutable)。当想改变 加 mut(mutable) 。 const 不允许用mut ,只能声明常量,…...

iOS代码混淆----自动

先大致解释一下“编译"、"反编译": 编译:就是把千千万万行字符串(也叫代码,或者源文件),变成010101010101(机器码,也叫目标代码) 编译过程:预处理-编译-汇编-链接 我的脚本运行在预处理阶段。 反编…...

对Mysql和应用微服务做TPS压力测试

1.对Mysql 使用工具:mysqlslap工具 使用命令: mysqlslap -uroot pGG8697000!#--auto generate sql -auto generate sql-load typemixed-concurrency100,200 - number of queries1000-iterations10 - number-int-cols7 - number-charcols13auto genera…...

将程序添加至右键菜单

将程序添加至右键菜单 手动导入 如果要将cmder添加至右键菜单。可以通过编写reg注册表方式添加 也可以在路径HKEY_CLASSES_ROOT\Directory\Background\shell中右击添加 创建项commadn 编写reg注册表 [HKEY_CLASSES_ROOT\Directory\Background\shell\cmder]为注册表地址 Wi…...

三板斧的使用、全局配置文件、静态文件的配置、orm介绍

三板斧的使用 【1】HttpResponse 返回字符串类型 【2】render 返回html页面,并且在返回给浏览器之前还可以给html页面传值 【3】redirect 重定向页面 视图函数必须返回一个 HttpResponse 对象 def index(request):print(request)# return HttpResponse("r…...

【编程实践】黑框框里的打字小游戏,但是汇编语言

开始: 在学习王爽的《汇编语言》的过程中,我就真切地体会到编程实践对于理解的帮助。起初我没有安装书中的实验环境,看到100页左右就开始感觉无趣、吃力,看了后面忘前面,差点就要放弃这本书的学习。好在我后来还是装好…...

ElasticSearch的集群、节点、索引、分片和副本

Elasticsearch是面向文档型数据库,一条数据在这里就是一个文档。为了方便大家理解,我们将Elasticsearch里存储文档数据和关系型数据库MySQL存储数据的概念进行一个类比 ES里的Index可以看做一个库,而Types相当于表,Documents则相当…...

std::cout无法打印uint8_t类型的数据

std::cout在处理uint8_t变量类型的时候默认输出字符&#xff0c;刚好数字0-10对应的ascii字符都是不可打印的 解决&#xff1a; 使用static_cast std::cout << static_cast<int>(time) << std::endl;参考文章&#xff1a;https://blog.csdn.net/weixin_459…...

浅谈泛在电力物联网在智能配电系统应用

贾丽丽 安科瑞电气股份有限公司 上海嘉定 201801 摘要&#xff1a;在社会经济和科学技术不断发展中&#xff0c;配电网实现了角色转变&#xff0c;传统的单向供电服务形式已经被双向能流服务形式取代&#xff0c;社会多样化的用电需求也得以有效满足。随着物联网技术的发展&am…...

已解决:云原生领域的超时挂载Bug — Kubernetes深度剖析

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

Rust 异步编程

Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)

Aspose.PDF 限制绕过方案&#xff1a;Java 字节码技术实战分享&#xff08;仅供学习&#xff09; 一、Aspose.PDF 简介二、说明&#xff08;⚠️仅供学习与研究使用&#xff09;三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...