当前位置: 首页 > news >正文

测试用例篇

1.测试用例的意义

测试用例(Test Case)是为了实施测试而向被测试的系统提供的一组集合,这组集合包含:测试环境、操作步骤、测试数据、预期结果等要素。
测试用例的意义是为了帮助测试人员了解测什么,怎么测
eg:水杯的测试用例
在这里插入图片描述

测试用例的常见测试点

●功能测试: 对产品的功能设计测试用例(来源是需求文档/日常生活经验)
●性能测试: 功能测试没有问题不代表性能好(极端情况:高并发量,响应时间等等)
● 界面测试: 每个元素的大小, 颜色, 材质, 形状; 页面跳转, 文字的错别字, 遮挡等需要测试
● 兼容性测试: 软件不同的版本是否兼容, 不同浏览器, 不同的系统版本, 数据兼容性
● 易用性测试: 产品是否具备简单易上手的属性
● 安全测试: 用户的隐私数据是否加密(注册场景, 接口返回值等等)(用户密码在界面展示/接口参数传递数据库里对隐私数据是否加密, SQL注入)

具体的设计测试用例的方法

等价类

根据需求将输入划分为若干个等价类,从每个等价类选出一个测试用例,若测试用例通过,则认为所代表的等价类测试通过。解决了不能穷举测试的问题。
在这里插入图片描述
步骤:

  1. 确认有效等价类和无效等价类
  2. 编写测试用例
    ● 输入长度为6-18位的密码,具体为10位
    ● 输入长度小于6位的密码,具体为1位
    ● 输入长度为大于18位的密码,20位

边界值

边界值指: 有效边界 + 无效边界
成绩大于60可以领奖 边界值: 60(无效边界) 61(有效边界)

判定表

使用场景:输入条件的组合对应不同的结果。
判定表设计测试用例得分步骤

  1. 确认输入条件和输出条件
  2. 找出输入条件和输出条件之间的关系
  3. 画判定表
  4. 根据判定表编写测试用例

案例
当订单使用了红包或订单金额大于300元,则该订单是优惠订单,否则是不优惠的订单。

  1. 确认输入条件和输出条件
    输入条件:红包A 金额大于300元B 订单已提交C
    输出条件:有优惠1 无优惠2

  2. 找出输入条件和输出条件之间的关系
    先确定输入条件之间的可能组合关系
    最后根据组合给出对应的输出结果
    在这里插入图片描述

  3. 画判定表
    在这里插入图片描述

  4. 根据判定表编写测试用例
    在这里插入图片描述

判定表法和因果法步骤类似,不过因果法里多了一步叫做“画因果图”

场景设计法

就是因为很多软件不同的场景, 都是基于不同事件的触发。不同事件的触发,会导致场景走向不同的 时间流 / 场景。场景设计法 就是把不同的功能点 给串起来了,形成一个场景。 要注意的是:不同的功能点有不同的输出,不同的输出就会导致不同的测试场景。还可以认为是将一个功能集成模块 给 拆分成一个个单独功能模块,进行设计测试用例。

在这里插入图片描述

正交法

正交实验设计法指从大量的实验中挑选出适量的,有代表性的点,依据“正交表”合理的设计测试用例
在这里插入图片描述
正交表的表示 L4(2^3),4代表4组实验,3代表的是因素数,2代表每个因素数对应的水平数。
正交表的特性:

  1. 每一列中,不同的数字出现的次数相等。
  2. 任意两列中数字的排列方式齐全而且均衡。

根据正交表设计测试用例的步骤:

  1. 找出 因素 和 水平
  2. 生成正交表 -》(借助生成正交表的工具:allparis)
  3. 根据正交表来编写测试用例
  4. 补充可能存在遗漏但是非常重要的测试用例。

相关文章:

测试用例篇

1.测试用例的意义 测试用例(Test Case)是为了实施测试而向被测试的系统提供的一组集合,这组集合包含:测试环境、操作步骤、测试数据、预期结果等要素。 测试用例的意义是为了帮助测试人员了解测什么,怎么测 eg&#x…...

自动驾驶自主避障概况

文章目录前言1. 自主避障在自动驾驶系统架构中的位置2. 自主避障算法分类2.1 人工势场法(APF)2.1.1引力势场的构建2.1.2斥力势场的构建2.1.3人工势场法的改进2.2 TEB(Timed-Eastic-Band, 定时弹性带)2.3 栅格法2.4 向量场直方图(V…...

Python实用的库排名…

Python 是一个功能强大的编程语言,有着丰富的第三方库和模块,可以帮助你解决各种各样的问题。以下是一些比较厉害的 Python 库: NumPy:一个强大的数值计算库,提供了高效的数组和矩阵操作功能。 Pandas:提供…...

【YOLO系列】YOLOv4论文超详细解读1(翻译 +学习笔记)

前言 经过上一期的开篇介绍,我们知道YOLO之父Redmon在twitter正式宣布退出cv界,大家都以为YOLO系列就此终结的时候,天空一声巨响,YOLOv4闪亮登场!v4作者是AlexeyAB大神,虽然换人了,但论文中给出…...

【神经网络】Transformer基础问答

1.Transforme与LSTM的区别 transformer和LSTM最大的区别就是LSTM的训练是迭代的,无法并行训练,LSTM单元计算完T时刻信息后,才会处理T1时刻的信息,T 1时刻的计算依赖 T-时刻的隐层计算结果。而transformer的训练是并行了&#xff0…...

制定防火墙策略的步骤和建议

制定防火墙策略是保护企业网络环境安全的关键一步。下面是一些制定防火墙策略的步骤和建议,供参考: 识别网络资产:确定企业网络环境中所有的网络资产,包括服务器、应用程序、数据库、移动设备和终端用户设备等,并进行…...

新必应(New Bing)国内申请与使用教程

微软的新必应(New Bing)基于GPT4模型,比ChatGPT的GPT3.5模型领先半个世代。并且集成了Edge浏览器的数据资源,功能更加强大。经过不断的踩坑,终于申请到了New Bing的使用权限,且国内网络也能够正常使用&…...

博客系统——项目测试报告

目录 前言 博客系统——项目介绍 1、测试计划 1.1、功能测试 1.1.1、编写测试用例 1.1.2、实际执行步骤 1.2、使用Selenium进行Web自动化测试 1.2.1、引入依赖 1.2.2、提取共性,实现代码复用 1.2.3、创建测试套件类 1.2.4、博客登录页自动化测试 1.2.5、…...

Macbook M1 安装PDI(Kettle) 9.3

Macbook M1 安装PDI(Kettle) 9.3 当前 PDI(Kettle)最新版为9.3,依赖Java JDK 11。因为没有专门用于 M1的程序,需要下载并安装x86_64架构的JDK及依赖软件,并 “强制在Intel模式下运行shell” 的方式来实现 Kettle 的正…...

机器学习——模型评估

在学习得到的模型投放使用之前,通常需要对其进行性能评估。为此,需使用一个“测试集”(testing set)来测试模型对新样本的泛化能力,然后以测试集上的“测试误差( tootino error)作为泛化误差的近似。我们假设测试集是从样本真实分…...

react react-redux学习记录

react react-redux学习记录1.原理2.怎么用呢2.1 容器组件2.2UI组件2.3 App.jsx3.简化3.1简写mapDispatch3.2 Provider组件的使用3.3整合UI组件和容器组件1.原理 UI组件:不能使用任何redux的api,只负责页面的呈现、交互等。 容器组件:负责和redux通信&…...

nodejs环境配置

啥是node.js 简单理解就是js运行环境 啥是npm 简单理解就是nodejs包管理工具,全称Node Package Manager 啥是cnpm npm的开源镜像,在国内使用cnpm替代npm可以起到加速的效果 https://npmmirror.com/ ①安装node.js https://nodejs.org/en/download/ 下载…...

数据治理之元数据管理Atlas

数据治理之元数据管理的利器——Atlas 一、数据治理与元数据管理 1.1 背景 为什么要做数据治理? 业务繁多,数据繁多,业务数据不断迭代。人员流动,文档不全,逻辑不清楚,对于数据很难直观理解,…...

15 Nacos客户端实例注册源码分析

Nacos客户端实例注册源码分析 实例客户端注册入口 流程图&#xff1a; 实际上我们在真实的生产环境中&#xff0c;我们要让某一个服务注册到Nacos中&#xff0c;我们首先要引入一个依赖&#xff1a; <dependency><groupId>com.alibaba.cloud</groupId>&l…...

C++将派生类赋值给基类(向上转型)

1.将派生类对象赋值给基类对象 #include <iostream> using namespace std;//基类 class A{ public:A(int a); public:void display(); public:int m_a; }; A::A(int a): m_a(a){ } void A::display(){cout<<"Class A: m_a"<<m_a<<endl; }//…...

使用Platform Designer创建Nios II 最小系统

Nios II简介 ​ Nios II 软核处理器十多年前就有了&#xff0c;它和xilinx的MicroBlaze类似&#xff0c;性能相比硬核处理器要差得多&#xff0c;工程应用也不是很多&#xff0c;那还有必须学习一下吗&#xff1f;我个人认为了解一下Nios II开发流程&#xff0c;对intel FPGA开…...

CD销售管理系统

技术&#xff1a;Java、JSP等摘要&#xff1a;二十一世纪是一个集数字化&#xff0c;网络化&#xff0c;信息化的&#xff0c;以网络为核心的社会。中国的网民充分领略到“畅游天地间&#xff0c;网络无极限” 所带来的畅快。随着Internet的飞速发展&#xff0c;使得网络的应用…...

华为OD机试模拟题 用 C++ 实现 - 玩牌高手(2023.Q1)

最近更新的博客 【华为OD机试模拟题】用 C++ 实现 - 最多获得的短信条数(2023.Q1)) 文章目录 最近更新的博客使用说明玩牌高手题目输入输出描述示例一输入输出说明Code使用说明 参加华为od机试,一定要注意不要完全背诵代码,需要理解之后模仿写出,通过率才会高。 华为…...

Hive 的Stage如何划分?

Hive 的Stage如何划分&#xff0c;也是Hive SQL需要优化的一个点&#xff0c;这个问题&#xff0c;我也是在实际的工作中遇到的。所以我查询了网络的解答并记录下来&#xff0c;以便日后复习。以下是主要内容&#xff0c;enjoy~~~ 一个 Hive 任务会包含一个或多个 stage&#…...

《嵌入式应用开发》实验一、开发环境搭建与布局(上)

1. 搭建开发环境 去官网&#xff08;https://developer.android.google.cn/studio&#xff09;下载 Android Studio。 安装SDK&#xff08;默认Android 7.0即可&#xff09; 全局 gradle 镜像配置 在用户主目录下的 .gradle 文件夹下面新建文件 init.gradle&#xff0c;内容为…...

day52 ResNet18 CBAM

在深度学习的旅程中&#xff0c;我们不断探索如何提升模型的性能。今天&#xff0c;我将分享我在 ResNet18 模型中插入 CBAM&#xff08;Convolutional Block Attention Module&#xff09;模块&#xff0c;并采用分阶段微调策略的实践过程。通过这个过程&#xff0c;我不仅提升…...

JVM垃圾回收机制全解析

Java虚拟机&#xff08;JVM&#xff09;中的垃圾收集器&#xff08;Garbage Collector&#xff0c;简称GC&#xff09;是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象&#xff0c;从而释放内存空间&#xff0c;避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云

目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南&#xff1a;从入门到实战 一、Grunt 是什么&#xff1f; Grunt是一个基于 Node.js 的前端自动化任务运行器&#xff0c;主要用于自动化执行项目开发中重复性高的任务&#xff0c;例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...