通过拉普拉斯特征映射降维
拉普拉斯特征映射(Laplacian Eigenmaps),主要包括拉普拉斯特征映射(Laplacian Eigenmaps)使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。
1 介绍
拉普拉斯特征映射(Laplacian Eigenmaps)是一种不太常见的降维算法,它看问题的角度和常见的降维算法不太相同,是从局部的角度去构建数据之间的关系。也许这样讲有些抽象,具体来讲,拉普拉斯特征映射是一种基于图的降维算法,它希望相互间有关系的点(在图中相连的点)在降维后的空间中尽可能的靠近,从而在降维后仍能保持原有的数据结构。
2 推导
拉普拉斯特征映射通过构建邻接矩阵为 W W W (邻接矩阵定义见这里) 的图来重构数据流形的局部结构特征。其主要思想是,如果两个数据 实例 i i i 和 j j j 很相似,那么 i i i 和 j j j 在 降维后目标子空间中应该尽量接近。设数据实例的数目为 n n n ,目标子空间即最终的降维目标的维度为 m m m 。 定义 $ n \times m$ 大小的矩阵 Y Y Y ,其中每一个行向量 y i T y_{i}^{T} yiT 是数据实例 i i i 在目标 m m m 维子空间中的向量表示(即降维后的数据实例 i i i )。我们的目的是 让相似的数据样例 i i i 和 j j j 在降维后的目标子空间里仍旧尽量接近,故拉普拉斯特征映射优化的目标函数如下:
min ∑ i , j ∥ y i − y j ∥ 2 W i j \min \sum\limits _{i, j}\left\|y_{i}-y_{j}\right\|^{2} W_{i j} mini,j∑∥yi−yj∥2Wij
下面开始推导:
$ \begin{array}{l} \sum\limits_{i=1}^{n} \sum\limits_{j=1}{n}&\left|y_{i}-y_{j}\right|{2} W_{i j} \ &=\sum\limits_{i=1}^{n} \sum\limits_{j=1}{n}\left(y_{i}{T} y_{i}-2 y_{i}^{T} y_{j}+y_{j}^{T} y_{j}\right) W_{i j} \ &=\sum\limits_{i=1}{n}\left(\sum\limits_{j=1}{n} W_{i j}\right) y_{i}^{T} y_{i}+\sum\limits_{j=1}{n}\left(\sum\limits_{i=1}{n} W_{i j}\right) y_{j}^{T} y_{j}-2 \sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} y_{i}^{T} y_{j} W_{i j} \ &=2 \sum\limits_{i=1}^{n} D_{i i} y_{i}^{T} y_{i}-2 \sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} y_{i}^{T} y_{j} W_{i j} \ &=2 \sum\limits_{i=1}^{n}\left(\sqrt{D_{i i}} y_{i}\right)^{T}\left(\sqrt{D_{i i}} y_{i}\right)-2 \sum\limits_{i=1}^{n} y_{i}{T}\left(\sum\limits_{j=1}{n} y_{j} W i j\right) \ &=2 \operatorname{trace}\left(Y^{T} D Y\right)-2 \sum\limits_{i=1}^{n} y_{i}^{T}(Y W)_{i} \ &=2 \operatorname{trace}\left(Y^{T} D Y\right)-2 \operatorname{trace}\left(Y^{T} W Y\right) \ &=2 \operatorname{trace}\left[Y^{T}(D-W) Y\right] \ &=2 \operatorname{trace}\left(Y^{T} L Y\right) \end{array} $
其中 $W $ 是图的邻接矩阵,对角矩阵 D D D 是图的度矩阵 ( D i i = ∑ j = 1 n W i j ) \left(D_{i i}=\sum\limits_{j=1}^{n} W_{i j}\right) (Dii=j=1∑nWij) ,$ L=D-W$ 成为图的拉普拉斯矩阵。
变换后的拉普拉斯特征映射优化的目标函数如下:
min trace ( Y T L Y ) s.t. Y T D Y = I \begin{array}{l}\min \operatorname{trace}\left(Y^{T} L Y\right)\\ \text { s.t. } Y^{T} D Y=I \end{array} mintrace(YTLY) s.t. YTDY=I
其中限制条件 s . t . Y T D Y = I s . t . Y^{T} D Y=I s.t.YTDY=I 保证优化问题有解,下面用拉格朗日乘子法对目标函数求解:
f ( Y ) = tr ( Y T L Y ) + tr [ Λ ( Y T D Y − I ) ] f(Y)=\operatorname{tr}\left(Y^{T} L Y\right)+\operatorname{tr}\left[\Lambda\left(Y^{T} D Y-I\right)\right] f(Y)=tr(YTLY)+tr[Λ(YTDY−I)]
∂ f ( Y ) ∂ Y = L Y + L T Y + D T Y Λ T + D Y Λ = 2 L Y + 2 D Y Λ = 0 \begin{array}{l} \frac{\partial f(Y)}{\partial Y}&=L Y+L^{T} Y+D^{T} Y \Lambda^{T}+D Y \Lambda \\ &=2 L Y+2 D Y \Lambda=0 \end{array} ∂Y∂f(Y)=LY+LTY+DTYΛT+DYΛ=2LY+2DYΛ=0
∴ L Y = − D Y Λ \therefore L Y=-D Y \Lambda ∴LY=−DYΛ
其中用到了矩阵的迹的求导,具体方法见 迹求导。 Λ \Lambda Λ 为一个对角矩阵,另外 L L L 、 D D D 均为实对称矩阵,其转置与自身相等。对于单独的 y y y 向量,上式可写为: L y = λ D y L y=\lambda D y Ly=λDy,这是一个广义特征值问题。通过求得 m m m 个最小非零特征值所对应的特征向量,即可达到降维的目 的。
关于这里为什么要选择 m m m 个最小非零特征值所对应的特征向量。将 $L Y=-D Y \Lambda $ 带回到 min trace ( Y T L Y ) \min \operatorname{trace}\left(Y^{T} L Y\right) mintrace(YTLY) 中,由于有着约束条件 Y T D Y = I Y^{T} D Y=I YTDY=I 的限制,可以得到 $ \min \quad \operatorname{trace}\left(Y^{T} L Y\right)=\min \quad t r a c e(-\Lambda)$ 。即为特 征值之和。我们为了目标函数最小化,要选择最小的 m m m 个特征值所对应的特征向量。
3 步骤
使用时算法具体步骤为:
步骤1:构建图
使用某一种方法来将所有的点构建成一个图,例如使用KNN算法,将每个点最近的K个点连上边。K是一个预先设定的值。
步骤2:确定权重
确定点与点之间的权重大小,例如选用热核函数来确定,如果点 i 和点 j 相连,那么它们关系的权重设定为:
W i j = e − ∥ x i − x j ∥ 2 t W_{i j}=e^{-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{t}} Wij=e−t∥xi−xj∥2
另外一种可选的简化设定是 W i j = 1 W_{i j}=1 Wij=1 如果点 i i i ,$ j$ 相连,否则 $W_{i j}=0 $ 。
步骤3:特征映射
计算拉普拉斯矩阵 L L L 的特征向量与特征值: $L y=\lambda D y $
使用最小的 m m m 个非零特征值对应的特征向量作为降维后的结果输出。
相关文章:
通过拉普拉斯特征映射降维
拉普拉斯特征映射(Laplacian Eigenmaps),主要包括拉普拉斯特征映射(Laplacian Eigenmaps)使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。 1 …...

【信息安全原理】——传输层安全(学习笔记)
📖 前言:为保证网络应用,特别是应用广泛的Web应用数据传输的安全性(机密性、完整性和真实性),可以在多个网络层次上采取安全措施。本篇主要介绍传输层提供应用数据安全传输服务的协议,包括&…...
GBDT减少模型偏差、随机森林减小模型方差
1、Adaboost算法原理,优缺点: 理论上任何学习器都可以用于Adaboost.但一般来说,使用最广泛的Adaboost弱学习器是决策树和神经网络。对于决策树,Adaboost分类用了CART分类树,而Adaboost回归用了CART回归树。 Adaboost…...

使用IDEA工具处理git合并后的冲突的细节
使用 IDEA 处理合并(merge) 使用IDEA处理git合并如果遇到冲突,对冲突文件的不冲突部分需要处理吗?会自动将双方不冲突的部分合并吗? 比如如下,使用 IDEA 合并 branch1 到 branch2 分支,出现了冲突,如下图…...
快速下载ChatGLM系列模型
1. 说明与步骤 在无法访问huggingface的网络环境下(或者是网速不够好时),(目前)还可以使用参考1中清华云盘的链接来下载,在linux下可以直接用如下wget命令来下载最耗时的模型部分。注意还需要把模型的.py等…...

【数据结构】顺序表 | 详细讲解
在计算机中主要有两种基本的存储结构用于存放线性表:顺序存储结构和链式存储结构。本篇文章介绍采用顺序存储的结构实现线性表的存储。 顺序存储定义 线性表的顺序存储结构,指的是一段地址连续的存储单元依次存储链性表的数据元素。 线性表的…...
100天精通风控建模(原理+Python实现)——第1天:什么是风控建模?
风控模型已在各大银行和公司都实际运用于业务,用于营销和风险控制等。本文以视频的形式阐述什么是风控建模,并提供风控建模原理和Python实现文章清单。首先了解什么是风控建模? 下文梳理风控模型搭建的原理和Python实现,按顺序做成清单的形式,点击即可进入相应文章链接。方…...
HTML转义字符
HTML,XML文件中存在部分字符作为标志字符无法作为文本内容使用,如< >,如果想在文本中输出,可使用转义字符。 < 的转义字符为 " < " > 的转义字符为 " > " <TextView.... ....android:t…...

【STM32】
STM32 1 CMSIS1.1 概述1.2 CMSIS 应用程序文件描述 2 库2.1 简介2.2 标准外设库(standrd Peripheral Libraries)2.3 HAL 库2.3.1 目录结构2.3.2 HAL库API函数和变量的命名规则2.3.3 HAL库对寄存器位操作的相关宏定义2.3.4 HAL库回调函数2.3.5 HAL使用注意…...

U盘不可以访问的维护
u盘打不开,可按下图,设置:winR→gpedit.msc;配置“管理模板”→“系统”→“可移动存储访问”→“所有可移动存储类”。 然后,选择“未配置”,如下图...

SpringCloud 微服务全栈体系(十三)
第十一章 分布式搜索引擎 elasticsearch 二、索引库操作 索引库就类似数据库表,mapping 映射就类似表的结构。 我们要向 es 中存储数据,必须先创建“库”和“表”。 1. mapping 映射属性 mapping 是对索引库中文档的约束,常见的 mapping …...

ROC 曲线详解
前言 ROC 曲线是一种坐标图式的分析工具,是由二战中的电子和雷达工程师发明的,发明之初是用来侦测敌军飞机、船舰,后来被应用于医学、生物学、犯罪心理学。 如今,ROC 曲线已经被广泛应用于机器学习领域的模型评估,说…...
113.路径总和II
原题链接:113.路径总和II 需复刷 思路: 跟112.路径总和不同,该题是要你找出所有相同的路径,那么此时就要注意存储,递归和回溯了。 全代码: class Solution { public:vector<vector<int>> re…...

【Linux】WSL安装Kali及基本操作
😏★,:.☆( ̄▽ ̄)/$:.★ 😏 这篇文章主要介绍WSL安装Kali及基本操作。 学其所用,用其所学。——梁启超 欢迎来到我的博客,一起学习,共同进步。 喜欢的朋友可以关注一下,下次更新不迷路…...

Linux基础开发工具之调试器gdb
文章目录 1.编译成的可调试的debug版本1.1gcc test.c -o testdebug -g1.2readelf -S testdebug | grep -i debug 2.调试指令2.0quit退出2.1list/l/l 数字: 显示代码2.2run/r运行2.3断点相关1. break num/b num: 设置2. info b: 查看3. d index: 删除4. n: F10逐过程5. p 变量名…...

Apache APISIX 的 Admin API 默认访问令牌漏洞(CVE-2020-13945)漏洞复现
漏洞描述 Apache APISIX 是一个动态、实时、高性能的 API 网关。Apache APISIX 有一个默认的内置 API 令牌,可用于访问所有 admin API,通过 2.x 版本中添加的参数导致远程执行 LUA 代码。 漏洞环境及利用 启动docker环境 访问9080端口 通过 admin api…...

Clickhouse学习笔记(3)—— Clickhouse表引擎
前言: 有关Clickhouse的前置知识详见: 1.ClickHouse的安装启动_clickhouse后台启动_THE WHY的博客-CSDN博客 2.ClickHouse目录结构_clickhouse 目录结构-CSDN博客 Cickhouse创建表时必须指定表引擎 表引擎(即表的类型)决定了&…...

WebSocket是什么以及其与HTTP的区别
新钛云服已累计为您分享774篇技术干货 HTTP协议 HTTP是单向的,客户端发送请求,服务器发送响应。举个例子,当用户向服务器发送请求时,该请求采用HTTP或HTTPS的形式,在接收到请求后,服务器将响应发送给客户端…...

Flutter 实战:构建跨平台应用
文章目录 一、简介二、开发环境搭建三、实战案例:开发一个简单的天气应用1. 项目创建2. 界面设计3. 数据获取4. 实现数据获取和处理5. 界面展示6. 添加动态效果和交互7. 添加网络错误处理8. 添加刷新功能9. 添加定位功能10. 添加通知功能11. 添加数据持久化功能 《F…...
Python中68个内置函数的使用与归类
前言 在Python解释器中内置的、可以直接使用的函数。这些函数不需要额外的导入或安装,可以直接在Python代码中调用。Python内置函数包括了很多常用的功能,比如对数据类型的操作、数学运算、字符串处理、文件操作等。一些常见的内置函数包括print()、len…...

JavaScript 中的 ES|QL:利用 Apache Arrow 工具
作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

Nuxt.js 中的路由配置详解
Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...

计算机基础知识解析:从应用到架构的全面拆解
目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...