当前位置: 首页 > news >正文

numpy 基础使用

NumPy是Python中科学计算的基础包。它是一个Python库,提供多维数组对象,各种派生对象(如掩码数组和矩阵),以及用于数组快速操作的各种API,有包括数学、逻辑、形状操作、排序、选择、输入输出、离散傅立叶变换、基本线性代数,基本统计运算和随机模拟等等。

首先引入numpy

import numpy as np

ndarray

NumPy 中定义的最重要的对象是称为 ndarray 的 N 维数组类型。 它描述相同类型的元素集合。 可以使用基于零的索引访问集合中的项目。

ndarray中的每个元素在内存中使用相同大小的块。 ndarray中的每个元素是数据类型对象的对象(称为 dtype)。

ndarray对象提取的任何元素(通过切片)由一个数组标量类型的 Python 对象表示。 下图显示了ndarray,数据类型对象(dtype)和数组标量类型之间的关系。

image-20231112140721397

ndarray常用属性:

属性含义
ndim维度(轴)的个数
shape维度,轴,形状大小
size元素的总个数
dtype元素的数据类型
itemsize元素的字节大小
num = np.random.randn(2,3)
print(num)
print("数据类型:", type(num))
print("维度个数:", num.ndim) # 行数
print("维度大小(n,m):", num.shape)
print("元素总个数:", num.size)
print("元素的数据类型:", num.dtype)
print("元素的字节大小:", num.itemsize)

image-20231112133133273

array函数

array具有以下功能:

  • 将任意的序列对象转换为数组
  • 支持将特定的嵌套序列转换为高维数组
  • 自动推断生成的数据类型
# 将列表转为数组类型
num1 = np.array([1,2,34])
num2 = np.array([ [1,2, 34],[34, 2, 1]])
# 设置元素类型
num3 = np.array([[1,2,34],[34,2,1]
], dtype='float32')print(num1)
print(num2)
print(num3)

image-20231112133849276

zeros函数

用法与array函数相似。创建全0数组,默认元素类型是浮点数类型;使用元组指定创建数组的形状。

# 创建 3行4列的全0矩阵
num = np.zeros((3,4))
print(num)

image-20231112134105447

ones函数

zeros函数一样,只不过是创建全0数组,默认元素类型是浮点数。

# 创建 3行4列的全1矩阵
num = np.ones((3,4))
print(num)

image-20231112134226823

empty函数

创建一个未初始化的数组。元素为内存中不确定值。

# 创建 3行4列的全1矩阵
num = np.empty((3,4))
print(num)

arange函数

arange()类似于python的内置函数range(),通过指定开始值终值步长来创建表示等差数列的一维数组,返回给定间隔内的均匀间隔值,注意得到的结果数组不包含终值

image-20231112134504698

image-20231112134528191

arange()函数有四个个参数,分别是start(开始值)、stop(终值)、step(步长)和dtype(数组类型)。

开始值可选,默认值是0,包含在数组中

终止值必选,不包含在数组中

步长可选,默认是1

# 长度为0到9
num1 = np.arange(10)
print(num1)# 长度为0到9的偶数
num2 = np.arange(0, 10,2)
print(num2)# 长度为0到9的奇数
num3 = np.arange(1,10,2)
print(num3)

image-20231112134931337

其他函数

  • asarray函数:类似array函数,但若转换对象为数组时,仅创 建一个引用,而array为深拷贝。
  • ones_like函数:创建一个与指定数组相同形状的全1数组。
  • zeros_like函数:创建一个与指定数组相同形状的全0数组。
  • empty_like函数:创建一个与指定数组相同形状的未初始化数组。

数据类型

Numpy 的类型C 的类型描述
np.int8int8_t字节(-128到127)
np.int16int16_t整数(-32768至32767)
np.int32int32_t整数(-2147483648至2147483647)
np.int64int64_t整数(-9223372036854775808至9223372036854775807)
np.uint8uint8_t无符号整数(0到255)
np.uint16uint16_t无符号整数(0到65535)
np.uint32uint32_t无符号整数(0到4294967295)
np.uint64uint64_t无符号整数(0到18446744073709551615)
np.intpintptr_t用于索引的整数,通常与索引相同 ssize_t
np.uintpuintptr_t整数大到足以容纳指针
np.float32float
np.float64 / np.float_double请注意,这与内置python float的精度相匹配。
np.complex64float complex复数,由两个32位浮点数(实数和虚数组件)表示
np.complex128 / np.complex_double complex请注意,这与内置python 复合体的精度相匹配。

还有许多别名等,详情看:数据类型 | NumPy

数据类型的表示

既可以用类型本身,如np.int32,也可以用类型名称字符串,例如int32,还可以用类型代码字符串,例如i4

类型转换

使用astype方法进行数组之间的类型转换。

默认生成一个新数组。

num = np.arange(1,10,1.5)
print(num)num1 = num.astype(int)
print(num1)

image-20231112140030354

数组运算

  • 相同形状的数组之间的运算逐元素执行。

  • 数组与标量间的运算,将计算参数传递给 数组的每一个元素。

num1 = np.array([1, 2, 3])
num2 = np.array([3, 4, 5])# 相同形状的数组之间的运算逐元素执行。
print(num1 + num2)# 数组与标量间的运算,将计算参数传递给 数组的每一个元素。
print(num1 + 100)

image-20231112140443699

Python之Numpy详细教程_python numpy-CSDN博客

NumPy 介绍 | NumPy

相关文章:

numpy 基础使用

NumPy是Python中科学计算的基础包。它是一个Python库,提供多维数组对象,各种派生对象(如掩码数组和矩阵),以及用于数组快速操作的各种API,有包括数学、逻辑、形状操作、排序、选择、输入输出、离散傅立叶变…...

sqlite3编译脚本

../configure --hostarm --buildx86 CC/opt/sdk/gcc-arm-8.3-arm-armv5t-linux-gnueabi/bin/arm-armv5t-linux-gnueabi-gcc --prefix/opt/sdk/gcc-arm-8.3-arm-armv5t-linux-gnueabi/arm-armv5t-linux-gnueabi/sysroot/usr...

环形链表解析(c语言)c语言版本!自我解析(看了必会)

目录 1.判断一个表是否是环形链表! 代码如下 解析如下 2.快指针的步数和慢指针的步数有什么影响(无图解析) 3.怎么找到环形链表的入环点 代码如下 解析如下 1.判断一个表是否是环形链表! 代码如下 bool hasCycle(struct L…...

科技云报道:数智化升级,如何跨越数字世界与实体产业的鸿沟?

科技云报道原创。 数智化是当下商业环境下最大的确定性。 2022年,中国数字经济规模达50.2万亿元,占国内生产总值比重提升至41.5%,数字经济成为推动经济发展的重要引擎。从小型创业公司到跨国巨头,数字化转型在企业发展历程中彰显…...

Rt-Thread 移植6--多线程(KF32)

6.1 就绪列表 6.1.1 线程就绪优先级组 线程优先级表的索引对应的线程的优先级。 为了快速的找到线程在线程优先级表的插入和移出的位置,RT-Thread专门设计了一个线程就绪优先级组。线程就绪优先组是一个32位的整型数,每一个位对应一个优先级&#xff…...

HarmonyOS应用开发-首选项与后台通知管理

首选项 在移动互联网蓬勃发展的今天,移动应用给我们生活带来了极大的便利,这些便利的本质在于数据的互联互通。因此在应用的开发中数据存储占据了非常重要的位置,HarmonyOS应用开发也不例外。本章以HarmonyOS的首选项为例,介绍了…...

通过easyexcel导出数据到excel表格

这篇文章简单介绍一下怎么通过easyexcel做数据的导出,使用之前easyui构建的歌曲列表crud应用,添加一个导出按钮,点击的时候直接连接后端接口地址,在后端的接口完成数据的导出功能。 前端页面完整代码 let editingId; let request…...

Android---MVP 中 presenter 声明周期的管理

我们经常在 Android MVP 架构中的 Presenter 层做一些耗时操作,比如请求网络数据,然后根据请求后的结果刷新 View。但是,如果按返回结束 Activity,而 Presenter 依然在执行耗时操作。那么就有可能造成内存泄漏,严重时甚…...

Oracle中的索引碎片

索引碎片是指索引在存储空间上不连续的分布情况,它可能会影响到数据库性能和查询效率。索引碎片化主要由以下几个原因导致: 插入、更新和删除操作:当对表中的数据进行插入、更新或删除操作时,索引也需要相应地更新。这些DML操作可…...

Java必刷入门递归题×5(内附详细递归解析图)

目录 1.求N的阶乘 2.求12...N的和 3.顺序打印数字的每一位 4.求数字的每一位之和 5.求斐波拉契数列 1.求N的阶乘 (1)解析题目意思 比如求5的阶乘,符号表示就是5!;所以5!5*4*3*2*1我们下面使用简单的…...

android 闪屏图适配尺寸

不同的 Android 设备可能具有不同的屏幕尺寸和分辨率,因此最好提供不同尺寸的启动画面图像,以确保与各种设备的兼容性。 以下是 Android 启动画面图像的一些最常见尺寸: 320 x 480像素(肖像) 480 x 320像素&#xff0…...

正则表达式中(?s)与(?m)的区别

理论: (?m) 和 (?s) 是正则表达式中的两个模式标志,它们具有不同的作用: (?m) 多行模式标志(也称为 “multiline” 模式): 默认情况下,正则表达式将整个输入字符串视为单行多行文本中使用…...

Clickhouse学习笔记(11)—— 数据一致性

使用合并树引擎时,无论是ReplacingMergeTree还是SummingMergeTree,都只能保证数据的最终一致性,因为数据的去重、聚合等操作会在数据合并的期间进行,而合并会在后台以一个不确定的时间进行,因此无法预先计划&#xff1…...

【uniapp】六格验证码输入框实现

效果图 代码实现 <view><view class"tips">已发送验证码至<text class"tips-phone">{{ phoneNumber }}</text></view><view class"code-input-wrap"><input class"code-input" v-model"…...

【react hook】在react hook组件中,使用Antd Table组件,columns数据异步获取,list数据更新但没有rerender解决办法

情景描述 我们有一个react组件&#xff0c;显示了一个Antd Table组件&#xff0c;设置了一个columns变量并复制给Table的columns属性&#xff0c;由于我们请求的datasource来源是异步的&#xff0c;示例伪代码如下&#xff1a; const [columns, setColumns] useState([]); /…...

ChatGPT的图识别来了

前几天ChatGPT推出了Dall-E 3功能&#xff0c;可以根据文字和描述一段话来生成一个或者一组图。 这次又来重磅了&#xff0c;图识别又来了&#xff01;换句话说&#xff0c;也即是文生图&#xff0c;图生文都可以实现了&#xff0c;一起来试试 1、解释图中的意思 &#xff0…...

java Stream编程笔记

文章目录 Stream介绍什么是 Stream&#xff1f; Stream中间操作过滤操作&#xff08;filter&#xff09;映射操作&#xff08;map&#xff09;排序操作&#xff08;sorted&#xff09;截断操作&#xff08;limit 和 skip&#xff09; Stream 的终止操作forEach 和 peek聚合操作…...

顶顶通语音识别使用说明

介绍 顶顶通语音识别软件(asrproxy)是一个对接了多种语音识别接口的语音识别系统。可私有化部署(支持中文英文和方言等&#xff0c;支持一句话识别、实时流识别、多声道录音文件识别。 原理 asrproxy内嵌了阿里达摩院的开源语音识别工具包FunASR,后续我们也会使用自有的预料…...

重磅发布 OpenAI 推出用户自定义版 ChatGPT

文章目录 重磅发布 OpenAI 推出用户自定义版 ChatGPT个人简介 重磅发布 OpenAI 推出用户自定义版 ChatGPT OpenAI 首届开发者大会 (OpenAI DevDay) 于北京时间 11 月 7 日凌晨 02:00 开始&#xff0c;大会上宣布了一系列平台更新。其中一个重要更新是用户可以创建他们自己的自定…...

Java 幼儿园(20231111)读取 json 文件

1、功能场景 &#xff08;1&#xff09;多人合作开发一个功能模块时&#xff0c;需要调用外部接口 &#xff08;2&#xff09;对方接口的开发工作还没有完成&#xff0c;只能提供一个返回值的示例文件 json 文件。 &#xff08;3&#xff09;返回的 json 数据多达几百个字段。 …...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)

目录 1.TCP的连接管理机制&#xff08;1&#xff09;三次握手①握手过程②对握手过程的理解 &#xff08;2&#xff09;四次挥手&#xff08;3&#xff09;握手和挥手的触发&#xff08;4&#xff09;状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

postgresql|数据库|只读用户的创建和删除(备忘)

CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

回溯算法学习

一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...