PSP - 蛋白质复合物结构预测 Template Pair 特征 Mask 可视化
欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/134333419
在蛋白质复合物结构预测中,在 TemplatePairEmbedderMultimer 层中 ,构建 Template Pair 特征的源码,即:
- 将特征
template_dgram
、pseudo_beta_mask_2d
、aatype_one_hot
、backbone_mask_2d
、unit_vector(x/y/z)
特征,通过 linear 层累加到一起。 - 其中,都需要使用
multichain_mask_2d
进行固定掩码,选择单链区域。 - 输出维度:
([1, 1102, 1102, 64])
,linear层的输出c_out
维度是 64。
源码如下:
def forward(self,template_dgram: torch.Tensor,aatype_one_hot: torch.Tensor,query_embedding: torch.Tensor,pseudo_beta_mask: torch.Tensor,backbone_mask: torch.Tensor,multichain_mask_2d: torch.Tensor,unit_vector: geometry.Vec3Array,
) -> torch.Tensor:act = 0.0pseudo_beta_mask_2d = (pseudo_beta_mask[..., None] * pseudo_beta_mask[..., None, :])pseudo_beta_mask_2d = pseudo_beta_mask_2d * multichain_mask_2dtemplate_dgram = template_dgram * pseudo_beta_mask_2d[..., None]act += self.dgram_linear(template_dgram)act += self.pseudo_beta_mask_linear(pseudo_beta_mask_2d[..., None])aatype_one_hot = aatype_one_hot.to(template_dgram.dtype)act += self.aatype_linear_1(aatype_one_hot[..., None, :, :])act += self.aatype_linear_2(aatype_one_hot[..., None, :])backbone_mask_2d = backbone_mask[..., None] * backbone_mask[..., None, :]backbone_mask_2d = backbone_mask_2d * multichain_mask_2dx, y, z = [coord * backbone_mask_2d for coord in unit_vector]act += self.x_linear(x[..., None])act += self.y_linear(y[..., None])act += self.z_linear(z[..., None])act += self.backbone_mask_linear(backbone_mask_2d[..., None])query_embedding = self.query_embedding_layer_norm(query_embedding)act += self.query_embedding_linear(query_embedding)return act
template_dgram
特征:
template_dgram
特征与 multichain_mask_2d
:
backbone_mask_2d
特征:
backbone_mask_2d
特征与 multichain_mask_2d
:
写入特征,即:
tmp_dict = dict()
tmp_dict["pseudo_beta_mask_2d_prev"] = pseudo_beta_mask_2d.cpu().numpy()
tmp_dict["pseudo_beta_mask_2d_post"] = pseudo_beta_mask_2d.cpu().numpy()
tmp_dict["template_dgram_post"] = template_dgram.cpu().numpy()
tmp_dict["backbone_mask_2d_prev"] = backbone_mask_2d.cpu().numpy()
tmp_dict["backbone_mask_2d_post"] = backbone_mask_2d.cpu().numpy()import pickle
with open("template_pair_embedder_multimer.pkl", "wb") as f:pickle.dump(tmp_dict, f)
logger.info(f"[CL] saved template_pair_embedder_multimer!")
读取特征,即:
def load_tensor_dict(input_path):"""加载特征文件['template_dgram', 'z', 'pseudo_beta_mask', 'backbone_mask', 'multichain_mask_2d','unit_vector_x', 'unit_vector_y', 'unit_vector_z']"""import picklewith open(input_path, "rb") as f:obj = pickle.load(f)print(f"[Info] feat_dict: {obj.keys()}")return objdef process_template_pair_embedder_multimer_dict(feat_dict, output_dir):print(f"[Info] feat_dict.keys: {feat_dict.keys()}")draw_tensor_2d(feat_dict["pseudo_beta_mask_2d_prev"], os.path.join(output_dir, "pseudo_beta_mask_2d_prev.png"))draw_tensor_2d(feat_dict["pseudo_beta_mask_2d_post"], os.path.join(output_dir, "pseudo_beta_mask_2d_prev.png"))draw_template_dgram(feat_dict["template_dgram_post"], os.path.join(output_dir, "template_dgram_post.png"))draw_tensor_2d(feat_dict["backbone_mask_2d_prev"], os.path.join(output_dir, "backbone_mask_2d_prev.png"))draw_tensor_2d(feat_dict["backbone_mask_2d_post"], os.path.join(output_dir, "backbone_mask_2d_post.png"))def draw_tensor_2d(feat, output_path):"""backbone_mask: torch.Size([1, 1102])"""feat = np.squeeze(feat)f, ax_arr = plt.subplots(1, 1, figsize=(8, 5))im = ax_arr.imshow(feat)f.colorbar(im, ax=ax_arr)plt.savefig(output_path, bbox_inches='tight', format='png')plt.show()def draw_template_dgram(feat, output_path):"""template_dgram: torch.Size([1, 1102, 1102, 39])"""f, ax_arr = plt.subplots(6, 7, figsize=(24, 15))ax_arr = ax_arr.flatten()feat = np.squeeze(feat)print(f"[Info] feat: {feat.shape}")for i in range(0, 42):if i <= 38:im = ax_arr[i].imshow(feat[:, :, i], interpolation='none')f.colorbar(im, ax=ax_arr[i])else:ax_arr[i].set_axis_off()plt.savefig(output_path, bbox_inches='tight', format='png')plt.show()
相关文章:

PSP - 蛋白质复合物结构预测 Template Pair 特征 Mask 可视化
欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/134333419 在蛋白质复合物结构预测中,在 TemplatePairEmbedderMultimer 层中 ,构建 Template Pair 特征的源码,…...
RK3568开发笔记-amixer开机设置音量异常
目录 前言 一、amixer介绍 1. 显示音频设备信息 2. 显示音量信息...

STM32两轮平衡小车原理详解(开源)
一、引言 关于STM32两轮平衡车的设计,我想在读者阅读本文之前应该已经有所了解,所以本文的重点是代码的分享和分析。至于具体的原理,我觉得读者不必阅读长篇大论的文章,只需按照本文分享的代码自己亲手制作一辆平衡车,…...
区间内的真素数问题(C#)
题目:区间内的真素数 找出正整数 M 和 N 之间(N 不⼩于 M)的所有真素数。真素数的定义:如果⼀个正整数P 为素数,且其反序也为素数,那么 P 就为真素数。例如,11,13 均为真素数&#…...

eclipse安装lombok插件
lombok插件下载:Download 下载完成,lombok.jar放到eclipse根目录,双击jar运行 运行界面,点击Install安装。 安装完成,重启IDE,rebuild 项目。 rebuild 项目...

故障演练 | 微服务架构下如何做好故障演练
前言 微服务架构场景中,应用系统复杂切分散。长期运行时,局部出现故障时不可避免的。如果发生故障时不能进行有效反应,系统的可用性将极大地降低。 什么是故障演练 故障演练是指模拟生产环境中可能出现的故障,测试系统或应用在…...

Python爬虫-获取汽车之家车家号
前言 本文是该专栏的第9篇,后面会持续分享python爬虫案例干货,记得关注。 地址:aHR0cHM6Ly9jaGVqaWFoYW8uYXV0b2hvbWUuY29tLmNuL0F1dGhvcnMjcHZhcmVhaWQ9MjgwODEwNA== 需求:获取汽车之家车家号数据 笔者将在正文中介绍详细的思路以及采集方法,废话不多说,跟着笔者直接往…...

No195.精选前端面试题,享受每天的挑战和学习
🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…...
pytest与testNg自动化框架
一.pytest 1.安装pytest: pip install pytest 2.编写用例 - 收集用例 - 执行用例 - 生成报告 3.pytest如何自动识别用例 识别规则如下: 1、搜索根目录:默认从当前目录中搜集测试用例,即在哪个目录下运行pytest命令,…...

数据库安全:Hadoop 未授权访问-命令执行漏洞.
数据库安全:Hadoop 未授权访问-命令执行漏洞. Hadoop 未授权访问主要是因为 Hadoop YARN 资源管理系统配置不当,导致可以未经授权进行访问,从而被攻击者恶意利用。攻击者无需认证即可通过 RESTAPI 部署任务来执行任意指令,最终完…...

前端---认识HTML
文章目录 什么是HTML?HTML的读取、运行HTML的标签注释标签标题标签段落标签换行标签格式化标签图片标签a标签表格标签列表标签表单标签form标签input标签文本框单选框复选框普通按钮提交按钮文件选择框 select标签textarea标签特殊标签div标签span标签 什么是HTML&a…...

竞赛 题目:基于FP-Growth的新闻挖掘算法系统的设计与实现
文章目录 0 前言1 项目背景2 算法架构3 FP-Growth算法原理3.1 FP树3.2 算法过程3.3 算法实现3.3.1 构建FP树 3.4 从FP树中挖掘频繁项集 4 系统设计展示5 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 基于FP-Growth的新闻挖掘算法系统的设计与实现…...

保姆级jupyter lab配置清单
❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️ 👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博…...

数据结构预算法--链表(单链表,双向链表)
1.链表 目录 1.链表 1.1链表的概念及结构 1.2 链表的分类 2.单链表的实现(不带哨兵位) 2.1接口函数 2.2函数的实现 3.双向链表的实现(带哨兵位) 3.1接口函数 3.2函数的实现 1.1链表的概念及结构 概念:链表是一种物理存储结…...

数据结构线性表——栈
前言:哈喽小伙伴们,今天我们将一起进入数据结构线性表的第四篇章——栈的讲解,栈还是比较简单的哦,跟紧博主的思路,不要掉队哦。 目录 一.什么是栈 二.如何实现栈 三.栈的实现 栈的初始化 四.栈的操作 1.数据入栈…...
自定义 springboot 启动器 starter 与自动装配原理
Maven 依赖 classpath 类路径管理 Maven 项目中的类路径添加来源分为三类 自定义 springboot starter starter 启动器定义的规则自定义 starter 示例 自动装配 文章链接...

16 _ 二分查找(下):如何快速定位IP对应的省份地址?
通过IP地址来查找IP归属地的功能,不知道你有没有用过?没用过也没关系,你现在可以打开百度,在搜索框里随便输一个IP地址,就会看到它的归属地。 这个功能并不复杂,它是通过维护一个很大的IP地址库来实现的。地址库中包括IP地址范围和归属地的对应关系。 当我们想要查询202…...
vb.net圣经带快捷键,用原装的数据库
Imports System.Data.SqlServerCe Imports System.Text.RegularExpressions Imports System.Data.OleDbPublic Class Form1Dim jiuyue As String() {"创", "出", "利", "民", "申", "书", "士", "…...

Unity中Shader的雾效
文章目录 前言一、Unity中的雾效在哪开启二、Unity中不同种类雾的区别1、线性雾2、指数雾1(推荐用这个,兼具效果和性能)3、指数雾2(效果更真实,性能消耗多) 三、在我们自己的Shader中实现判断,是…...

企业微信开发教程一:添加企微应用流程图解以及常见问题图文说明
最近在前辈的基础上新添加了一个企微应用,过程中遇到了一些卡点,这里一一通过图片标注与注释的方式记录一下,希望能给后来人提供一些清晰明了的帮助,话不多说,大家直接看图吧。 (文中包括一些本项目独有的配…...

docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...

label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...

CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...

Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
Java 加密常用的各种算法及其选择
在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。 一、对称加密算法…...

HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...