PSP - 蛋白质复合物结构预测 Template Pair 特征 Mask 可视化
欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/134333419
在蛋白质复合物结构预测中,在 TemplatePairEmbedderMultimer 层中 ,构建 Template Pair 特征的源码,即:
- 将特征
template_dgram、pseudo_beta_mask_2d、aatype_one_hot、backbone_mask_2d、unit_vector(x/y/z)特征,通过 linear 层累加到一起。 - 其中,都需要使用
multichain_mask_2d进行固定掩码,选择单链区域。 - 输出维度:
([1, 1102, 1102, 64]),linear层的输出c_out维度是 64。
源码如下:
def forward(self,template_dgram: torch.Tensor,aatype_one_hot: torch.Tensor,query_embedding: torch.Tensor,pseudo_beta_mask: torch.Tensor,backbone_mask: torch.Tensor,multichain_mask_2d: torch.Tensor,unit_vector: geometry.Vec3Array,
) -> torch.Tensor:act = 0.0pseudo_beta_mask_2d = (pseudo_beta_mask[..., None] * pseudo_beta_mask[..., None, :])pseudo_beta_mask_2d = pseudo_beta_mask_2d * multichain_mask_2dtemplate_dgram = template_dgram * pseudo_beta_mask_2d[..., None]act += self.dgram_linear(template_dgram)act += self.pseudo_beta_mask_linear(pseudo_beta_mask_2d[..., None])aatype_one_hot = aatype_one_hot.to(template_dgram.dtype)act += self.aatype_linear_1(aatype_one_hot[..., None, :, :])act += self.aatype_linear_2(aatype_one_hot[..., None, :])backbone_mask_2d = backbone_mask[..., None] * backbone_mask[..., None, :]backbone_mask_2d = backbone_mask_2d * multichain_mask_2dx, y, z = [coord * backbone_mask_2d for coord in unit_vector]act += self.x_linear(x[..., None])act += self.y_linear(y[..., None])act += self.z_linear(z[..., None])act += self.backbone_mask_linear(backbone_mask_2d[..., None])query_embedding = self.query_embedding_layer_norm(query_embedding)act += self.query_embedding_linear(query_embedding)return act
template_dgram 特征:

template_dgram 特征与 multichain_mask_2d:

backbone_mask_2d 特征:

backbone_mask_2d 特征与 multichain_mask_2d:

写入特征,即:
tmp_dict = dict()
tmp_dict["pseudo_beta_mask_2d_prev"] = pseudo_beta_mask_2d.cpu().numpy()
tmp_dict["pseudo_beta_mask_2d_post"] = pseudo_beta_mask_2d.cpu().numpy()
tmp_dict["template_dgram_post"] = template_dgram.cpu().numpy()
tmp_dict["backbone_mask_2d_prev"] = backbone_mask_2d.cpu().numpy()
tmp_dict["backbone_mask_2d_post"] = backbone_mask_2d.cpu().numpy()import pickle
with open("template_pair_embedder_multimer.pkl", "wb") as f:pickle.dump(tmp_dict, f)
logger.info(f"[CL] saved template_pair_embedder_multimer!")
读取特征,即:
def load_tensor_dict(input_path):"""加载特征文件['template_dgram', 'z', 'pseudo_beta_mask', 'backbone_mask', 'multichain_mask_2d','unit_vector_x', 'unit_vector_y', 'unit_vector_z']"""import picklewith open(input_path, "rb") as f:obj = pickle.load(f)print(f"[Info] feat_dict: {obj.keys()}")return objdef process_template_pair_embedder_multimer_dict(feat_dict, output_dir):print(f"[Info] feat_dict.keys: {feat_dict.keys()}")draw_tensor_2d(feat_dict["pseudo_beta_mask_2d_prev"], os.path.join(output_dir, "pseudo_beta_mask_2d_prev.png"))draw_tensor_2d(feat_dict["pseudo_beta_mask_2d_post"], os.path.join(output_dir, "pseudo_beta_mask_2d_prev.png"))draw_template_dgram(feat_dict["template_dgram_post"], os.path.join(output_dir, "template_dgram_post.png"))draw_tensor_2d(feat_dict["backbone_mask_2d_prev"], os.path.join(output_dir, "backbone_mask_2d_prev.png"))draw_tensor_2d(feat_dict["backbone_mask_2d_post"], os.path.join(output_dir, "backbone_mask_2d_post.png"))def draw_tensor_2d(feat, output_path):"""backbone_mask: torch.Size([1, 1102])"""feat = np.squeeze(feat)f, ax_arr = plt.subplots(1, 1, figsize=(8, 5))im = ax_arr.imshow(feat)f.colorbar(im, ax=ax_arr)plt.savefig(output_path, bbox_inches='tight', format='png')plt.show()def draw_template_dgram(feat, output_path):"""template_dgram: torch.Size([1, 1102, 1102, 39])"""f, ax_arr = plt.subplots(6, 7, figsize=(24, 15))ax_arr = ax_arr.flatten()feat = np.squeeze(feat)print(f"[Info] feat: {feat.shape}")for i in range(0, 42):if i <= 38:im = ax_arr[i].imshow(feat[:, :, i], interpolation='none')f.colorbar(im, ax=ax_arr[i])else:ax_arr[i].set_axis_off()plt.savefig(output_path, bbox_inches='tight', format='png')plt.show()
相关文章:
PSP - 蛋白质复合物结构预测 Template Pair 特征 Mask 可视化
欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/134333419 在蛋白质复合物结构预测中,在 TemplatePairEmbedderMultimer 层中 ,构建 Template Pair 特征的源码,…...
RK3568开发笔记-amixer开机设置音量异常
目录 前言 一、amixer介绍 1. 显示音频设备信息 2. 显示音量信息...
STM32两轮平衡小车原理详解(开源)
一、引言 关于STM32两轮平衡车的设计,我想在读者阅读本文之前应该已经有所了解,所以本文的重点是代码的分享和分析。至于具体的原理,我觉得读者不必阅读长篇大论的文章,只需按照本文分享的代码自己亲手制作一辆平衡车,…...
区间内的真素数问题(C#)
题目:区间内的真素数 找出正整数 M 和 N 之间(N 不⼩于 M)的所有真素数。真素数的定义:如果⼀个正整数P 为素数,且其反序也为素数,那么 P 就为真素数。例如,11,13 均为真素数&#…...
eclipse安装lombok插件
lombok插件下载:Download 下载完成,lombok.jar放到eclipse根目录,双击jar运行 运行界面,点击Install安装。 安装完成,重启IDE,rebuild 项目。 rebuild 项目...
故障演练 | 微服务架构下如何做好故障演练
前言 微服务架构场景中,应用系统复杂切分散。长期运行时,局部出现故障时不可避免的。如果发生故障时不能进行有效反应,系统的可用性将极大地降低。 什么是故障演练 故障演练是指模拟生产环境中可能出现的故障,测试系统或应用在…...
Python爬虫-获取汽车之家车家号
前言 本文是该专栏的第9篇,后面会持续分享python爬虫案例干货,记得关注。 地址:aHR0cHM6Ly9jaGVqaWFoYW8uYXV0b2hvbWUuY29tLmNuL0F1dGhvcnMjcHZhcmVhaWQ9MjgwODEwNA== 需求:获取汽车之家车家号数据 笔者将在正文中介绍详细的思路以及采集方法,废话不多说,跟着笔者直接往…...
No195.精选前端面试题,享受每天的挑战和学习
🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…...
pytest与testNg自动化框架
一.pytest 1.安装pytest: pip install pytest 2.编写用例 - 收集用例 - 执行用例 - 生成报告 3.pytest如何自动识别用例 识别规则如下: 1、搜索根目录:默认从当前目录中搜集测试用例,即在哪个目录下运行pytest命令,…...
数据库安全:Hadoop 未授权访问-命令执行漏洞.
数据库安全:Hadoop 未授权访问-命令执行漏洞. Hadoop 未授权访问主要是因为 Hadoop YARN 资源管理系统配置不当,导致可以未经授权进行访问,从而被攻击者恶意利用。攻击者无需认证即可通过 RESTAPI 部署任务来执行任意指令,最终完…...
前端---认识HTML
文章目录 什么是HTML?HTML的读取、运行HTML的标签注释标签标题标签段落标签换行标签格式化标签图片标签a标签表格标签列表标签表单标签form标签input标签文本框单选框复选框普通按钮提交按钮文件选择框 select标签textarea标签特殊标签div标签span标签 什么是HTML&a…...
竞赛 题目:基于FP-Growth的新闻挖掘算法系统的设计与实现
文章目录 0 前言1 项目背景2 算法架构3 FP-Growth算法原理3.1 FP树3.2 算法过程3.3 算法实现3.3.1 构建FP树 3.4 从FP树中挖掘频繁项集 4 系统设计展示5 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 基于FP-Growth的新闻挖掘算法系统的设计与实现…...
保姆级jupyter lab配置清单
❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️ 👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博…...
数据结构预算法--链表(单链表,双向链表)
1.链表 目录 1.链表 1.1链表的概念及结构 1.2 链表的分类 2.单链表的实现(不带哨兵位) 2.1接口函数 2.2函数的实现 3.双向链表的实现(带哨兵位) 3.1接口函数 3.2函数的实现 1.1链表的概念及结构 概念:链表是一种物理存储结…...
数据结构线性表——栈
前言:哈喽小伙伴们,今天我们将一起进入数据结构线性表的第四篇章——栈的讲解,栈还是比较简单的哦,跟紧博主的思路,不要掉队哦。 目录 一.什么是栈 二.如何实现栈 三.栈的实现 栈的初始化 四.栈的操作 1.数据入栈…...
自定义 springboot 启动器 starter 与自动装配原理
Maven 依赖 classpath 类路径管理 Maven 项目中的类路径添加来源分为三类 自定义 springboot starter starter 启动器定义的规则自定义 starter 示例 自动装配 文章链接...
16 _ 二分查找(下):如何快速定位IP对应的省份地址?
通过IP地址来查找IP归属地的功能,不知道你有没有用过?没用过也没关系,你现在可以打开百度,在搜索框里随便输一个IP地址,就会看到它的归属地。 这个功能并不复杂,它是通过维护一个很大的IP地址库来实现的。地址库中包括IP地址范围和归属地的对应关系。 当我们想要查询202…...
vb.net圣经带快捷键,用原装的数据库
Imports System.Data.SqlServerCe Imports System.Text.RegularExpressions Imports System.Data.OleDbPublic Class Form1Dim jiuyue As String() {"创", "出", "利", "民", "申", "书", "士", "…...
Unity中Shader的雾效
文章目录 前言一、Unity中的雾效在哪开启二、Unity中不同种类雾的区别1、线性雾2、指数雾1(推荐用这个,兼具效果和性能)3、指数雾2(效果更真实,性能消耗多) 三、在我们自己的Shader中实现判断,是…...
企业微信开发教程一:添加企微应用流程图解以及常见问题图文说明
最近在前辈的基础上新添加了一个企微应用,过程中遇到了一些卡点,这里一一通过图片标注与注释的方式记录一下,希望能给后来人提供一些清晰明了的帮助,话不多说,大家直接看图吧。 (文中包括一些本项目独有的配…...
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
Go 并发编程基础:通道(Channel)的使用
在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...
Qemu arm操作系统开发环境
使用qemu虚拟arm硬件比较合适。 步骤如下: 安装qemu apt install qemu-system安装aarch64-none-elf-gcc 需要手动下载,下载地址:https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x…...
Kafka主题运维全指南:从基础配置到故障处理
#作者:张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1:主题删除失败。常见错误2:__consumer_offsets占用太多的磁盘。 主题日常管理 …...
9-Oracle 23 ai Vector Search 特性 知识准备
很多小伙伴是不是参加了 免费认证课程(限时至2025/5/15) Oracle AI Vector Search 1Z0-184-25考试,都顺利拿到certified了没。 各行各业的AI 大模型的到来,传统的数据库中的SQL还能不能打,结构化和非结构的话数据如何和…...
ubuntu系统文件误删(/lib/x86_64-linux-gnu/libc.so.6)修复方案 [成功解决]
报错信息:libc.so.6: cannot open shared object file: No such file or directory: #ls, ln, sudo...命令都不能用 error while loading shared libraries: libc.so.6: cannot open shared object file: No such file or directory重启后报错信息&…...
