不同优化器的应用
简单用用,优化器具体参考
深度学习中的优化器原理(SGD,SGD+Momentum,Adagrad,RMSProp,Adam)_哔哩哔哩_bilibili
收藏版|史上最全机器学习优化器Optimizer汇总 - 知乎 (zhihu.com)
import numpy as np
import matplotlib.pyplot as plt
import torch
# prepare dataset
# x,y是矩阵,3行1列 也就是说总共有3个数据,每个数据只有1个特征
x_data = torch.tensor([[1.0], [2.0], [3.0]])y_data = torch.tensor([[2.0], [4.0], [6.0]])loss_SGD = []
loss_Adagrad = []
loss_Adam = []
loss_Adamax = []
loss_ASGD = []
loss_LBFGS = []
loss_RMSprop = []
loss_Rprop = []class LinearModel(torch.nn.Module):def __init__(self):super().__init__()self.Linear = torch.nn.Linear(1,1)def forward(self,x):y_pred = self.Linear(x)return y_predmodel = LinearModel()criterion = torch.nn.MSELoss(reduction='sum')
optimizer_SGD = torch.optim.SGD(model.parameters(),lr=0.01)
optimizer_Adagrad = torch.optim.SGD(model.parameters(),lr=0.01)
optimizer_Adam = torch.optim.SGD(model.parameters(),lr=0.01)
optimizer_Adamax = torch.optim.SGD(model.parameters(),lr=0.01)
optimizer_ASGD = torch.optim.SGD(model.parameters(),lr=0.01)
optimizer_LBFGS = torch.optim.SGD(model.parameters(),lr=0.01)
optimizer_RMSprop = torch.optim.SGD(model.parameters(),lr=0.01)
optimizer_Rprop = torch.optim.SGD(model.parameters(),lr=0.01)epoch_list = []# optimizer_SGD
for epoch in range(100):y_pred = model(x_data)loss = criterion(y_pred,y_data)epoch_list.append(epoch)loss_SGD.append(loss.data)optimizer_SGD.zero_grad()loss.backward()optimizer_SGD.step()# optimizer_Adagrad
for epoch in range(100):y_pred = model(x_data)loss = criterion(y_pred,y_data)loss_Adagrad.append(loss.data)optimizer_Adagrad.zero_grad()loss.backward()optimizer_Adagrad.step()# optimizer_Adam
for epoch in range(100):y_pred = model(x_data)loss = criterion(y_pred,y_data)loss_Adam.append(loss.data)optimizer_Adam.zero_grad()loss.backward()optimizer_Adam.step()# optimizer_Adamax
for epoch in range(100):y_pred = model(x_data)loss = criterion(y_pred,y_data)loss_Adamax.append(loss.data)optimizer_Adamax.zero_grad()loss.backward()optimizer_Adamax.step()# optimizer_ASGD
for epoch in range(100):y_pred = model(x_data)loss = criterion(y_pred,y_data)loss_ASGD.append(loss.data)optimizer_ASGD.zero_grad()loss.backward()optimizer_ASGD.step()# optimizer_LBFGS
for epoch in range(100):y_pred = model(x_data)loss = criterion(y_pred,y_data)loss_LBFGS.append(loss.data)optimizer_LBFGS.zero_grad()loss.backward()optimizer_LBFGS.step()# optimizer_RMSprop
for epoch in range(100):y_pred = model(x_data)loss = criterion(y_pred,y_data)loss_RMSprop.append(loss.data)optimizer_RMSprop.zero_grad()loss.backward()optimizer_RMSprop.step()# optimizer_Rprop
for epoch in range(100):y_pred = model(x_data)loss = criterion(y_pred,y_data)loss_Rprop.append(loss.data)optimizer_Rprop.zero_grad()loss.backward()optimizer_Rprop.step()x_test = torch.tensor([4.0])
y_test = model(x_test)print('y_pred = ', y_test.data)plt.subplot(241)
plt.title("SGD")
plt.plot(epoch_list,loss_SGD)
plt.ylabel('cost')
plt.xlabel('epoch')plt.subplot(242)
plt.title("Adagrad")
plt.plot(epoch_list,loss_Adagrad)
plt.ylabel('cost')
plt.xlabel('epoch')plt.subplot(243)
plt.title("Adam")
plt.plot(epoch_list,loss_Adam)
plt.ylabel('cost')
plt.xlabel('epoch')plt.subplot(244)
plt.title("Adamax")
plt.plot(epoch_list,loss_Adamax)
plt.ylabel('cost')
plt.xlabel('epoch')plt.subplot(245)
plt.title("ASGD")
plt.plot(epoch_list,loss_ASGD)
plt.ylabel('cost')
plt.xlabel('epoch')plt.subplot(246)
plt.title("LBFGS")
plt.plot(epoch_list,loss_LBFGS)
plt.ylabel('cost')
plt.xlabel('epoch')plt.subplot(247)
plt.title("RMSprop")
plt.plot(epoch_list,loss_RMSprop)
plt.ylabel('cost')
plt.xlabel('epoch')plt.subplot(248)
plt.title("Rprop")
plt.plot(epoch_list,loss_Rprop)
plt.ylabel('cost')
plt.xlabel('epoch')
plt.show()
运行结果:

相关文章:
不同优化器的应用
简单用用,优化器具体参考 深度学习中的优化器原理(SGD,SGDMomentum,Adagrad,RMSProp,Adam)_哔哩哔哩_bilibili 收藏版|史上最全机器学习优化器Optimizer汇总 - 知乎 (zhihu.com) import numpy as np import matplotlib.pyplot as plt import torch # …...
学习网络编程No.9【应用层协议之HTTPS】
引言: 北京时间:2023/10/29/7:34,好久没有在周末早起了,该有的困意一点不少。伴随着学习内容的深入,知识点越来越多,并且对于爱好刨根问底的我来说,需要了解的知识就像一座大山,压得…...
PSP - 蛋白质复合物结构预测 Template Pair 特征 Mask 可视化
欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/134333419 在蛋白质复合物结构预测中,在 TemplatePairEmbedderMultimer 层中 ,构建 Template Pair 特征的源码,…...
RK3568开发笔记-amixer开机设置音量异常
目录 前言 一、amixer介绍 1. 显示音频设备信息 2. 显示音量信息...
STM32两轮平衡小车原理详解(开源)
一、引言 关于STM32两轮平衡车的设计,我想在读者阅读本文之前应该已经有所了解,所以本文的重点是代码的分享和分析。至于具体的原理,我觉得读者不必阅读长篇大论的文章,只需按照本文分享的代码自己亲手制作一辆平衡车,…...
区间内的真素数问题(C#)
题目:区间内的真素数 找出正整数 M 和 N 之间(N 不⼩于 M)的所有真素数。真素数的定义:如果⼀个正整数P 为素数,且其反序也为素数,那么 P 就为真素数。例如,11,13 均为真素数&#…...
eclipse安装lombok插件
lombok插件下载:Download 下载完成,lombok.jar放到eclipse根目录,双击jar运行 运行界面,点击Install安装。 安装完成,重启IDE,rebuild 项目。 rebuild 项目...
故障演练 | 微服务架构下如何做好故障演练
前言 微服务架构场景中,应用系统复杂切分散。长期运行时,局部出现故障时不可避免的。如果发生故障时不能进行有效反应,系统的可用性将极大地降低。 什么是故障演练 故障演练是指模拟生产环境中可能出现的故障,测试系统或应用在…...
Python爬虫-获取汽车之家车家号
前言 本文是该专栏的第9篇,后面会持续分享python爬虫案例干货,记得关注。 地址:aHR0cHM6Ly9jaGVqaWFoYW8uYXV0b2hvbWUuY29tLmNuL0F1dGhvcnMjcHZhcmVhaWQ9MjgwODEwNA== 需求:获取汽车之家车家号数据 笔者将在正文中介绍详细的思路以及采集方法,废话不多说,跟着笔者直接往…...
No195.精选前端面试题,享受每天的挑战和学习
🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…...
pytest与testNg自动化框架
一.pytest 1.安装pytest: pip install pytest 2.编写用例 - 收集用例 - 执行用例 - 生成报告 3.pytest如何自动识别用例 识别规则如下: 1、搜索根目录:默认从当前目录中搜集测试用例,即在哪个目录下运行pytest命令,…...
数据库安全:Hadoop 未授权访问-命令执行漏洞.
数据库安全:Hadoop 未授权访问-命令执行漏洞. Hadoop 未授权访问主要是因为 Hadoop YARN 资源管理系统配置不当,导致可以未经授权进行访问,从而被攻击者恶意利用。攻击者无需认证即可通过 RESTAPI 部署任务来执行任意指令,最终完…...
前端---认识HTML
文章目录 什么是HTML?HTML的读取、运行HTML的标签注释标签标题标签段落标签换行标签格式化标签图片标签a标签表格标签列表标签表单标签form标签input标签文本框单选框复选框普通按钮提交按钮文件选择框 select标签textarea标签特殊标签div标签span标签 什么是HTML&a…...
竞赛 题目:基于FP-Growth的新闻挖掘算法系统的设计与实现
文章目录 0 前言1 项目背景2 算法架构3 FP-Growth算法原理3.1 FP树3.2 算法过程3.3 算法实现3.3.1 构建FP树 3.4 从FP树中挖掘频繁项集 4 系统设计展示5 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 基于FP-Growth的新闻挖掘算法系统的设计与实现…...
保姆级jupyter lab配置清单
❤️觉得内容不错的话,欢迎点赞收藏加关注😊😊😊,后续会继续输入更多优质内容❤️ 👉有问题欢迎大家加关注私戳或者评论(包括但不限于NLP算法相关,linux学习相关,读研读博…...
数据结构预算法--链表(单链表,双向链表)
1.链表 目录 1.链表 1.1链表的概念及结构 1.2 链表的分类 2.单链表的实现(不带哨兵位) 2.1接口函数 2.2函数的实现 3.双向链表的实现(带哨兵位) 3.1接口函数 3.2函数的实现 1.1链表的概念及结构 概念:链表是一种物理存储结…...
数据结构线性表——栈
前言:哈喽小伙伴们,今天我们将一起进入数据结构线性表的第四篇章——栈的讲解,栈还是比较简单的哦,跟紧博主的思路,不要掉队哦。 目录 一.什么是栈 二.如何实现栈 三.栈的实现 栈的初始化 四.栈的操作 1.数据入栈…...
自定义 springboot 启动器 starter 与自动装配原理
Maven 依赖 classpath 类路径管理 Maven 项目中的类路径添加来源分为三类 自定义 springboot starter starter 启动器定义的规则自定义 starter 示例 自动装配 文章链接...
16 _ 二分查找(下):如何快速定位IP对应的省份地址?
通过IP地址来查找IP归属地的功能,不知道你有没有用过?没用过也没关系,你现在可以打开百度,在搜索框里随便输一个IP地址,就会看到它的归属地。 这个功能并不复杂,它是通过维护一个很大的IP地址库来实现的。地址库中包括IP地址范围和归属地的对应关系。 当我们想要查询202…...
vb.net圣经带快捷键,用原装的数据库
Imports System.Data.SqlServerCe Imports System.Text.RegularExpressions Imports System.Data.OleDbPublic Class Form1Dim jiuyue As String() {"创", "出", "利", "民", "申", "书", "士", "…...
利用ngx_stream_return_module构建简易 TCP/UDP 响应网关
一、模块概述 ngx_stream_return_module 提供了一个极简的指令: return <value>;在收到客户端连接后,立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量(如 $time_iso8601、$remote_addr 等)&a…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...
IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
【JavaWeb】Docker项目部署
引言 之前学习了Linux操作系统的常见命令,在Linux上安装软件,以及如何在Linux上部署一个单体项目,大多数同学都会有相同的感受,那就是麻烦。 核心体现在三点: 命令太多了,记不住 软件安装包名字复杂&…...
Rapidio门铃消息FIFO溢出机制
关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...
python执行测试用例,allure报乱码且未成功生成报告
allure执行测试用例时显示乱码:‘allure’ �����ڲ����ⲿ���Ҳ���ǿ�&am…...
【分享】推荐一些办公小工具
1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由:大部分的转换软件需要收费,要么功能不齐全,而开会员又用不了几次浪费钱,借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...
无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...
