网页js版音频数字信号处理:H5录音+特定频率信号的特征分析和识别提取
文章目录
- 一、网页中的音频数据源
- 二、FFT:时域转频域
- 三、信号的特征分析
- 四、信号的识别提取
- 附录
音频数字信号处理 Audio DSP (Digital Signal Processing) 是一个复杂又专业的话题,本文介绍的是如何从音频中实时分析和识别出特定频率信号的一种方法,对应的代码为可运行在浏览器中的html5网页版(可移植);可用于识别环境中特定频率的声音、或噪声、乐器弹奏的音调。
在线测试:FFT频域分析ECharts频谱曲线图
900Hz频率的摩尔斯电码声音频谱曲线,为本文的主要分析对象,请见文末生成LOVE对应的电码音频文件,然后把文件拖入上面的这个在线测试页面,即可得到此图:
吉他6根空弦音频谱曲线:
一、网页中的音频数据源
H5网页中获取音频数据的方法至少有三种:
- 通过网络请求下载得到音频文件二进制内容(
xhr
、fetch
) - 通过
input[type=file]
选择文件,在用FileReader
读取获得二进制内容 - 通过浏览器的
getUserMedia
接口访问设备的麦克风,录制得到音频二进制内容
不同音频格式有不同的压缩编码方法,为了得到文件内的音频数据,我们需要解码音频文件,得到音频的采样数据(PCM
)才好进行下一步处理;.wav
格式的文件解码简单,它是一般是由wav头+pcm数据组合而成的,直接去掉wav头即完成解码,其他文件可通过AudioContext
的decodeAudioData
方法直接解码成32位pcm再转成16位pcm。
得益于现代浏览器的WebRTC
功能加持,网页也能实现丰富的音视频交互,可以实现网页录音,实时采集环境中的声音得到pcm数据,GitHub Recorder是一个功能丰富的H5网页录音开源库,可以方便的进行实时处理录音数据。
二、FFT:时域转频域
我们得到音频的采样数据(PCM
)后,可以将此数据按值的大小直接绘制出来,即可得到一个声音的波形,此波形为音频的时域波形:横坐标是时间,纵坐标是采样值的大小,比如在Audition
中显示如下图所示(生成此音频文件请见文末)。
在时域波形上,我们能直观的知道在某个时间点是否有声音,和声音的大小,但不知道这个声音是否是我们需要的信号,还是其他杂音;数字信号分析的重头戏出场了:FFT,快速傅里叶变换。
通过FFT可以将单个时域波形分解成N个不同频率的波形,即时域信号变换成频域信号,N取决于fftSize的大小,比如fftSize=1024
,将得到512
个频率分量;在Audition
中可以非常直观的感受到频域信号的强度分布,如下图所示,900Hz的信号非常亮(生成此音频文件请见文末)。
H5 js版的FFT的实现有很多开源代码可以参考,或者直接使用浏览器提供的AudioContext
的createAnalyser
接口来进行频域数据变换;Recorder库中的提供了2个FFT实现可以使用:extensions/lib.fft.js
、dsp.lib.fft_exact.js
,到上文中的在线测试中可以看到这两文件。
js版的FFT变换操作也比较简单,Audition
中用到的这个音频文件,在网页中通过变换后得到的频域数据,叠加绘制到一起即得到了文章开头的第一张摩尔斯电码声音频谱曲线图,信号非常明显。
三、信号的特征分析
以文章开头的“900Hz频率的摩尔斯电码声音频谱曲线图”为例,我们通过频谱分析,可以直观的看到信号最强的频率波峰,能量非常集中,频率值分散在900Hz附近,也就是说这段音频中信号的主要频率为900Hz左右,和实际生成此摩尔斯电码所使用的900Hz频率一致。
分析得到了主要频率,我们只关注这个主要频率的波形曲线,也能直观的看出和摩尔斯电码规律一致的特征:持续时间短的是滴(.),持续时间长的是嗒(-),嗒的长度是滴的3倍,滴嗒之间间隔1个滴的长度,字符之间间隔3个滴的长度(单词之间间隔7个滴以上的长度)。
四、信号的识别提取
分析出信号的特征后,就有办法通过编写代码来进行信号的识别和提取,依旧是以上图为例,我们来提取出里面包含的摩尔斯电码。
(1)过滤掉其他能量低的值,中只保留能量集中的几个频率
(2)程序代码中对这几个频率进行综合分析判断,每个波峰取和前面频率相差不大的频率当做有效波峰(这样可有效排除掉杂波干扰),得到一条曲线
(3)根据曲线中的值的大小,较小的值全部当做0,高的保留,最终转换得到断断续续的矩形波,有波峰的地方即为有信号,得到每个波峰的持续时间,即可识别出滴(.)嗒(-),即为摩尔斯电码
Q: 为啥不用PCM的音量大小来直接判断信号?
A: 最后的矩形波看起来和时域的波形包络没有多大区别,这是因为录制的样本中没有比较大的背景杂音干扰;在没有杂音干扰的情况下,直接用PCM的采样值(或音量)来提取信号也是可行的;但在有比较大的干扰的情况下(末尾那段杂音),时域就很难区分出是否是正确的信号,频域中分离出来的波形更能反映出原本的信号。
如果是要根据声音的频率来判断是什么信号,那就必须转到频域来识别处理,比如乐器的音调,时域是完全无法识别出是哪个调的。
附录
- Recorder用于html5录音:https://github.com/xiangyuecn/Recorder,网页中实时录制获得音频数据。
- 趣味摩尔斯电码:小程序,微信版和字节抖音版,将文本
LOVE
转换成摩斯码并播放,录制得到上文中使用的摩尔斯电码音频;内置电码翻译功能,可以实时录制音频并解析出电码,本文所总结的内容即为其音频识别成电码所使用的原理。
【完】
相关文章:

网页js版音频数字信号处理:H5录音+特定频率信号的特征分析和识别提取
文章目录一、网页中的音频数据源二、FFT:时域转频域三、信号的特征分析四、信号的识别提取附录音频数字信号处理 Audio DSP (Digital Signal Processing) 是一个复杂又专业的话题,本文介绍的是如何从音频中实时分析和识别出特定频率信号的一种方法&#…...
uniapp结合腾讯云及时通信IM的聊天记录本地存储方案
uniapp结合腾讯云及时通信IM的聊天记录本地存储方案 UniApp 是一个跨平台的应用开发框架,可以使用 Vue.js 开发多端应用(如H5、小程序、App等)。在 UniApp 中,可以使用 uni-app 提供的文件系统 API 完成本地文件存储的操作。 1.…...

PyQGIS开发 -- 基础学习笔记
1、自主学习QGIS开发虽然QGIS本身功能强大,但还是架不住我们要编写新的功能、新的业务流程、新的算法。前文中我们提到,扩展QGIS有2种方法,一是用Python、C来写QGIS的插件;另一种就是基于QGIS的C API开发独立应用程序。然而后者资…...

一篇了解模块打包工具之 ——webpack(1)
本篇采用问题引导的方式来学习webpack,借此梳理一下自己对webpack的理解,将所有的知识点连成一条线,形成对webpack的记忆导图。 最终目标,手动构建一个vue项目,目录结构参考vue-cli创建出来的项目 一、问问题 1. 第…...

k8s学习之路 | Day16 k8s 中的容器初探
文章目录容器镜像镜像名称镜像拉取策略私有仓库的拉取策略容器的环境变量和启动命令容器的环境变量容器的启动命令容器的生命周期钩子postStartpreStop容器的探针startupProbelivenessProbereadinessProbek8s 集群中最小的管理单元就是一个Pod,而Pod里面才是容器&am…...
export、import、commit、save、load的区别
目录1. docker export 和 docker import2. docker commit3.docker save 和 docker load1. docker export 和 docker import docker export 容器ID/容器Name > xxx.tar 导出一个容器快照 docker import xxx.tar NewImageName:tag 导入一个容器快照到本地镜像库 适用场景&a…...

多部委联合举办中国人工智能大赛启动会在厦召开,快商通亮相发言
站在“第二个百年奋斗目标”的新起点上,为深入推动我国人工智能产业创新发展,发掘一批人工智能优秀团队, 国家互联网信息办公室、工业和信息化部、公安部、国家广播电视总局、厦门市人民政府将联合主办第四届中国人工智能大赛 。快商通联合创…...

js红宝书学习笔记(1-6章)
就按照原书中写的章节顺序记笔记了, 还有可能我学过js一段时间了,可能有些对于新手的细节会忽略,但是会尽量写全的~ 1.第一章 什么是JavaScript 1.1讲了一些历史,所以我们从1.2开始看 1.2 JavaScript的实现 完整的JaveScript包…...
第十四届蓝桥杯第三期官方模拟赛C\C++题解
文章目录A-填空题题意算法参考代码(C)B-填空题题意算法参考代码(C)C-填空题题意算法参考代码(C)D-填空题题意算法参考代码(C)E-填空题题意算法参考代码(C)F题…...
API接口安全
目前项目都是前后端分离或者有对外提供接口的需求,在这些情况下,就要考虑接口安全。 如果不重视接口安全,可能导致严重的危害,例如数据盗取,服务宕机等。 可能的安全问题: 1.明文密码被攻击者抓包看到 前端可对密码或…...

2023前端一面vue面试题合集
函数式组件优势和原理 函数组件的特点 函数式组件需要在声明组件是指定 functional:true不需要实例化,所以没有this,this通过render函数的第二个参数context来代替没有生命周期钩子函数,不能使用计算属性,watch不能通过$emit 对外暴露事件&…...

【Leetcode 剑指Offer】第 5 天 查找算法(中等)
查找算法剑指 Offer 04. 二维数组中的查找剑指 Offer 11. 旋转数组的最小数字剑指 Offer 50. 第一个只出现一次的字符Python字典基础哈希表(python中是dict())有序哈希表第一个中等,后两个简单题。剑指 Offer 04. 二维数组中的查找 题&#…...
薯条投放适合哪些笔记?小红书薯条投放的3种模式
随着小红书平台的种草推广模式兴盛,薯条投放这个词也渐渐进入大众的视野,今天就来给大家讲讲什么是薯条投放,以及薯条投放适合哪些笔记。一、什么是薯条投放?薯条是一款为小红书用户打造的笔记推广工具,用户可选择推广目标&#…...

记录第一个Python练习的过程
题目如下 编写一个名为collatz()的函数,它有一个名为number的参数。如果参数是偶数,那么collatz()就打印出number // 2,并返回该值。如果number是奇数,collatz()就打印并返回3 * number 1。 然后编写一个程序,让用户…...

【Python】3.3实现多线程
程序Program进程Process线程Thread为完成特定任务而用计算机语言编写的一组计算机能识别和执行的指令的集合。程序是指令、数据及其组织形式的描述,一段静态代码,静态对象。计算机中的程序关于某数据集合上的一次执行过程。进程是程序的实体,…...

在linux中使用lftp和sftp下载文件(夹)
一、首先确保你的系统中已经下载了lftp和sftp。 1.安装lftp sudo apt install lftp sudo apt install screen 2.安装sftp 在Linux系统中,一般RedHat系统默认已经安装了openssh-client和openssh-server,即默认已经集成了sftp服务,不需要重…...

Docker简介与用法
文章目录1、Docker简介1.1、Docker能解决什么问题1.2、什么是虚拟机技术1.2.1、虚拟机的缺点1.3、什么是容器1.3.1、容器与虚拟机比较1.4、分析 Docker 容器架构1.4.1、Docker客户端和服务器1.4.2、Docker 镜像(Image)1.4.3、Docker 容器(Container)1.4.4、Docker 仓库(reposit…...

基于海鸥算法改进的DELM分类-附代码
海鸥算法改进的深度极限学习机DELM的分类 文章目录海鸥算法改进的深度极限学习机DELM的分类1.ELM原理2.深度极限学习机(DELM)原理3.海鸥算法4.海鸥算法改进DELM5.实验结果6.参考文献7.Matlab代码1.ELM原理 ELM基础原理请参考:https://blog.c…...

linux基本功系列之mount命令实战
文章目录前言一. mount命令的介绍二. 语法格式及常用选项三. 参考案例3.1 将iso镜像挂载到/mnt上3.2 把某个分区挂载到/sdb1上3.3 用只读的形式把/dev/sdb2挂载到/sdb2上3.4 设置自动挂载总结前言 大家好,又见面了,我是沐风晓月,本文是专栏【…...

力扣Top100题之两数相加(Java解法)
0 题目描述 给你两个 非空 的链表,表示两个非负的整数。它们每位数字都是按照 逆序 的方式存储的,并且每个节点只能存储 一位 数字。 请你将两个数相加,并以相同形式返回一个表示和的链表。 你可以假设除了数字 0 之外,这两个数…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业
6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
Java + Spring Boot + Mybatis 实现批量插入
在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法:使用 MyBatis 的 <foreach> 标签和批处理模式(ExecutorType.BATCH)。 方法一:使用 XML 的 <foreach> 标签ÿ…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)
本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...
安卓基础(Java 和 Gradle 版本)
1. 设置项目的 JDK 版本 方法1:通过 Project Structure File → Project Structure... (或按 CtrlAltShiftS) 左侧选择 SDK Location 在 Gradle Settings 部分,设置 Gradle JDK 方法2:通过 Settings File → Settings... (或 CtrlAltS)…...

【深度学习新浪潮】什么是credit assignment problem?
Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...
32单片机——基本定时器
STM32F103有众多的定时器,其中包括2个基本定时器(TIM6和TIM7)、4个通用定时器(TIM2~TIM5)、2个高级控制定时器(TIM1和TIM8),这些定时器彼此完全独立,不共享任何资源 1、定…...
Java详解LeetCode 热题 100(26):LeetCode 142. 环形链表 II(Linked List Cycle II)详解
文章目录 1. 题目描述1.1 链表节点定义 2. 理解题目2.1 问题可视化2.2 核心挑战 3. 解法一:HashSet 标记访问法3.1 算法思路3.2 Java代码实现3.3 详细执行过程演示3.4 执行结果示例3.5 复杂度分析3.6 优缺点分析 4. 解法二:Floyd 快慢指针法(…...