当前位置: 首页 > news >正文

薯条投放适合哪些笔记?小红书薯条投放的3种模式

  随着小红书平台的种草推广模式兴盛,薯条投放这个词也渐渐进入大众的视野,今天就来给大家讲讲什么是薯条投放,以及薯条投放适合哪些笔记。

  一、什么是薯条投放?

  薯条是一款为小红书用户打造的笔记推广工具,用户可选择推广目标,帮助笔记提升曝光量、互动量或粉丝量,通过薯条投放能让更多小红书用户们更快的看到你的精彩内容。此工具不仅支持多个时长的选择,还支持推广人群定向,选择智能推广人群或者自定义设置,如性别、年龄、地域和兴趣等特征。

  二、如何使用薯条

  如果想要使用薯条,大家可以点击进入自己想要推广的笔记页,点击笔记右上方的分享,在弹起的弹窗中,选择【薯条推广】按钮后进入下单页,然后根据自己的需求选择投放时长、推广人群和投放金额,等审核通过后,笔记就会被成功推广给更多小红书用户。

  开通薯条条件:

  1、企业号:无粉丝要求,认证即可申请开通。

  2、个人号:需要粉丝数量大于500、笔记篇数大于2、账号不可出现违规状况。

  三、薯条投放适合哪些笔记?

  1、建议大家选择发布时间较短的优质笔记进行推广,比如发布时间在30天内,自然流量下已有一定阅读、赞藏和评论量的笔记。【注意:薯条不支持推广社区违规笔记!】

  2、其中内容加热适合投放生活日常、经验分享等无商业属性的笔记,投放过程中不展示广告标;营销推广适合投放直播预告、商品笔记等有商业属性的笔记,投放过程中展示赞助标,若笔记含第三方产品或服务,需提供相关资质。

  3、有了适合的笔记,选择薯条不同推广目标还会有不同的效果差异,大家可以根据自己的需求来为笔记选择适合的薯条投放模式。

  【阅读播放量】模式:系统将重点提升阅读量数据,每笔订单仅支持选择一个目标。

  【点赞收藏量】模式:系统将重点提升点赞、收藏量数据,每笔订单仅支持选择一个目标。

  【粉丝关注量】模式:系统将重点提升关注量数据,每笔订单仅支持选择一个目标。

  投放 Tips :如果想多维度提升笔记阅读+互动+关注,建议多种模式配合交替投放,避免只推广一种模式。

  四、注意事项

  账号进行【营销推广】版薯条推广,需要账号主体资质、行业资质、物料资质符合《广告法》规则,方可使用薯条营销推广。

  审核流程:资质提交→后台审核→审核通过。

  所有购买薯条推广的笔记均需要审核,内容加热笔记需要满足《薯条软件服务协议》与《薯条内容规范》,营销推广笔记需满足《薯条软件服务协议》、《薯条内容规范》及《广告法》,审核时长一般会在1-2小时之内,但也会受当天用户笔记发布量的影响而波动。

  以上就是关于“薯条投放适合哪些笔记”的介绍,希望对大家有所帮助。

相关文章:

薯条投放适合哪些笔记?小红书薯条投放的3种模式

随着小红书平台的种草推广模式兴盛,薯条投放这个词也渐渐进入大众的视野,今天就来给大家讲讲什么是薯条投放,以及薯条投放适合哪些笔记。一、什么是薯条投放?薯条是一款为小红书用户打造的笔记推广工具,用户可选择推广目标&#…...

记录第一个Python练习的过程

题目如下 编写一个名为collatz()的函数,它有一个名为number的参数。如果参数是偶数,那么collatz()就打印出number // 2,并返回该值。如果number是奇数,collatz()就打印并返回3 * number 1。 然后编写一个程序,让用户…...

【Python】3.3实现多线程

程序Program进程Process线程Thread为完成特定任务而用计算机语言编写的一组计算机能识别和执行的指令的集合。程序是指令、数据及其组织形式的描述,一段静态代码,静态对象。计算机中的程序关于某数据集合上的一次执行过程。进程是程序的实体,…...

在linux中使用lftp和sftp下载文件(夹)

一、首先确保你的系统中已经下载了lftp和sftp。 1.安装lftp sudo apt install lftp sudo apt install screen 2.安装sftp 在Linux系统中,一般RedHat系统默认已经安装了openssh-client和openssh-server,即默认已经集成了sftp服务,不需要重…...

Docker简介与用法

文章目录1、Docker简介1.1、Docker能解决什么问题1.2、什么是虚拟机技术1.2.1、虚拟机的缺点1.3、什么是容器1.3.1、容器与虚拟机比较1.4、分析 Docker 容器架构1.4.1、Docker客户端和服务器1.4.2、Docker 镜像(Image)1.4.3、Docker 容器(Container)1.4.4、Docker 仓库(reposit…...

基于海鸥算法改进的DELM分类-附代码

海鸥算法改进的深度极限学习机DELM的分类 文章目录海鸥算法改进的深度极限学习机DELM的分类1.ELM原理2.深度极限学习机(DELM)原理3.海鸥算法4.海鸥算法改进DELM5.实验结果6.参考文献7.Matlab代码1.ELM原理 ELM基础原理请参考:https://blog.c…...

linux基本功系列之mount命令实战

文章目录前言一. mount命令的介绍二. 语法格式及常用选项三. 参考案例3.1 将iso镜像挂载到/mnt上3.2 把某个分区挂载到/sdb1上3.3 用只读的形式把/dev/sdb2挂载到/sdb2上3.4 设置自动挂载总结前言 大家好,又见面了,我是沐风晓月,本文是专栏【…...

力扣Top100题之两数相加(Java解法)

0 题目描述 给你两个 非空 的链表,表示两个非负的整数。它们每位数字都是按照 逆序 的方式存储的,并且每个节点只能存储 一位 数字。 请你将两个数相加,并以相同形式返回一个表示和的链表。 你可以假设除了数字 0 之外,这两个数…...

【测试】Python手机自动化测试库uiautomator2和weditor的详细使用

1.说明 我们之前在电脑操作手机进行自动化测试,基本上都是通过Appium的,这个工具确实强大,搭配谷歌官方的UiAutomator基本上可以完成各种测试,但缺点也很明显,配置环境太麻烦了,需要jdk、sdk等&#xff0c…...

《NFL橄榄球》:旧金山49人·橄榄1号位

旧金山四九人(San Francisco 49ers,又译旧金山淘金者) 是美国全国橄榄球联盟球队。成立于1946年,最初作为全美橄榄球联合会(AAFC)的一员参加比赛,后于1950年与克利夫兰布朗一同加入由美国橄榄球联合会合并而成的NFL。现任主教练为…...

spark为什么比hadoop快

网上一堆人根本对计算框架一知半解就出来糊弄人,常见解答有: spark是基于内存计算,所以快。这跟废话似的,mr计算的时候不也是基于内存? mr shuffle落盘。这也是胡扯, spark shuffle不落盘? 实际…...

跨境人都在用的指纹浏览器到底有什么魔力?三分钟带你了解透彻

什么是指纹浏览器?这是东哥近期收到最多的粉丝私信咨询,指纹两个字大家都很熟悉,指纹浏览器就变得陌生起来。之前东哥也跟大家分享过很多次指纹浏览器的用法,鉴于还是很多人不认识这个好用的工具,东哥今天就来详细给大…...

机器学习概述

机器学习是人工智能的核心研究领域之一,其研究动机是为了让计算机系统具有人的学习能力以便实现人工智能。目前被广泛采用的机器学习的定义是“利用经验来改善计算机系统自身的性能”。由于“经验在计算机系统中主要是以数据的形式存在的,因此机器学习需…...

企业网站自动生成系统的设计和实现

技术:Java、JSP等摘要:随着Internet技术的发展,人们的日常生活已经离不开网络。未来社会人们的生活和工作将越来越依赖于数字技术的发展,越来越数字化、网络化、电子化、虚拟化。Internet的发展历程以及目前的应用状况和发展趋势&…...

sikuli+eclipse对于安卓app自动化测试的应用

Sikuli是什么? 下面是来自于官网的介绍:Sikuli is a visual technology to automate and test graphical user interfaces (GUI) using images (screenshots). Sikuli includes Sikuli Script, a visual scripting API for Jython, and Sikuli IDE, an …...

react源码分析:babel如何解析jsx

同作为MVVM框架,React相比于Vue来讲,上手更需要JavaScript功底深厚一些,本系列将阅读React相关源码,从jsx -> VDom -> RDOM等一些列的过程,将会在本系列中一一讲解 工欲善其事,必先利其器 经过多年的…...

搜广推 WideDeep 与 DeepCrossNetwork (DCN) - 记忆+泛化共存

😄 这节来讲讲Wide&Deep与Deep&CrossNetwork (DCN)。从下图可看出WD非常重要,后面衍生出了一堆WD的变体。本节要讲的WD和DCN结构都非常简单,但其设计思想值得学习。 🚀 wide&deep:2016年,谷歌提出。 🚀 Deep&CrossNetwork (DCN):2017年,谷歌和斯坦…...

项目管理工具dhtmlxGantt甘特图入门教程(十四):导出/导入 Excel到 iCal

这篇文章给大家讲解利用dhtmlxgantt导入/导出Excel到iCal的操作方法。 dhtmlxGantt是用于跨浏览器和跨平台应用程序的功能齐全的Gantt图表,可满足应用程序的所有需求,是完善的甘特图图表库 DhtmlxGantt正版试用下载(qun;765665…...

k-means聚类总结

1.概述 聚类算法又叫做‘无监督学习’,其目的是将数据划分成有意义或有用的组(或簇)。 2.KMeans 关键概念:簇与质心 KMeans算法将一组N个样本的特征矩阵X划分为K个无交集的簇,直观上来看是簇是一组一组聚集在一起的…...

char * 和const char *的区别

一、含义的不同 char* 表示一个指针变量,并且这个变量是可以被改变的。 const char*表示一个限定不会被改变的指针变量。 二、模式的不同 char*是常量指针,地址不可以改变,但是指针的值可变。 const char*是指向常量的常量指针&#xff…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

centos 7 部署awstats 网站访问检测

一、基础环境准备&#xff08;两种安装方式都要做&#xff09; bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats&#xff0…...

【位运算】消失的两个数字(hard)

消失的两个数字&#xff08;hard&#xff09; 题⽬描述&#xff1a;解法&#xff08;位运算&#xff09;&#xff1a;Java 算法代码&#xff1a;更简便代码 题⽬链接&#xff1a;⾯试题 17.19. 消失的两个数字 题⽬描述&#xff1a; 给定⼀个数组&#xff0c;包含从 1 到 N 所有…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...