当前位置: 首页 > news >正文

C++ RBTree 理论

目录

这个性质可以总结为

红黑树的最短最长路径

红黑树的路径范围

code

结构

搞颜色

插入

插入逻辑

新插入节点

思考:2. 检测新节点插入后,红黑树的性质是否造到破坏?

解决方法

变色

旋转+变色

第三种情况,如果根节点上面还有节点


这个性质可以总结为

1.每个节点不是红色就是黑色

2.根节点是黑色的

3.不能有两个连续的红色节点  ,即可以出现 红黑  黑黑 不能出现红红

4.每条路径上的黑色机节点数量不一样

至于性质5:每个叶子结点都是黑色的,这里的叶子节点并不是真的叶子节点,而是NIL节点,即空节点。如图(a):

NIL节点有什么作用?如图(a-2),有多少条路径:

正确答案是有7条。路径路径的判断规则是:从根节点到NULL。

如果我们把NIL节点标记出来就好找路径了:

再比如,图(a-3)是否是红黑树:

大致一看好像是,但是把NIL节点标出来之后:

 路径(b)只有两个黑色节点,不满足红黑树的性质,不是红黑树。

红黑树的最短最长路径

那么红黑树的最短路径是什么样子的,应该是全黑的最短:

 那最长的路径呢,应该是一黑一红间隔排列的最长:

根据图(a-1)我们可以看出,最长的路径是最短的路径的2倍。

ps

一个红黑树不一定有最长路径,也不一定有最短路径。

如图(a-2),有最短路径,没有最长路径:

红黑树的路径范围

而知道了最短路径,最长路径,剩下的路径都在最短路径,最长路径范围内,可以写为

                             [n,2*n]

code

结构

template<class K,class V>struct	RBTreeNode
{RBTreeNode<K,V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* parent;pair<K, V>;Color _col;//初始话列表RBTreeNode(const pair<K, V>kv):_left(nullptr),_right(nullptr), _parent(nullptr), pair<K, V>,_col(RED){}
};

搞颜色

enum Color
{RED,BALACK
};

template<class  K,class V>class RBTree{typedef RBTreenode<k,v> Node;public:private:Node* _root = nullptr;};

插入

插入逻辑

如果节点为空,就给黑色。如果节点不为空,就插入值。

这个值如果比根节点小,就往左边插入,否则就往右边插入。

bool Insert(const pair<K, v>& kv){if (_root == nullptr){_root = new(kv);_root->_col = BALACK;return true;}//初始化父亲节点和根节点Node* parent = nullptr;Node* cur = _root;while (cur){//key值大,往右走if (cur->kv.first < kv.first){cur = cur->right;}//key值小,往左走else if (cur->kv.first > kv.first){cur = -cur->left;}//否则key值和当前节点相等,不插入else{return false;}}//找到了返回true1return true;	 }

新插入节点

思考:2. 检测新节点插入后,红黑树的性质是否造到破坏?

如图(b-1),现在要插入一个节点,那么是插入一个黑色节点还是红色节点呢?

如果插入黑色节点,那么该路径就会多一个黑色节点,根据红黑树特性,其他路径都要补一棵黑色节点,

如果插入红色节点,则只会影响父节点

(即

1.如果父节点也会红节点。两个红节点不能紧挨,需调整

2.如果父亲节点是黑色,则不需调整,直接插入。)。

我们看一下怎么调整,如图(b-2),新插入了一个红色节点7:

解决方法

能变色先变色,变色完之后还不行再旋转

变色

如图(b-3),先把父节点8变黑:

这个时候该路径就多了一个黑色节点,再变图(b-4)把6节点变红:

这个时候该路径又少了个黑色节点,再变图(b-5) 把5节点变黑:

旋转+变色

第二种情况,例如图(b-6):如果还是把父节点变为黑色,把6节点变为红色,那么其他路径就会多一个黑色节点。

而该路径又没有其他节点可以再变黑色来平衡这种状态,所以靠变色解决不了这个问题。

这个时候就要旋转了。

先右旋为图(c-1):

再左旋为图(c-2):

然后再变色为图(c-4):

情况一: cur为红,p为红,g为黑,u存在且为红

解决:叔叔存在,  变色

如图(d-0),新插入了一个节点cur:

cur为红色节点,那就需要调整。

把p节点变为黑色节点,那么u节点也要变为黑色节点,那么此时就要把g节点变为红色节点。也就是图(d-1):

为什么要把g节点变为红色节点呢?

假设g节点不变为红色也就是图(d-3):

由图(d-1)变为图(d-3)我们发现每条路径凭空多了1个黑色节点。

g节点上面还有节点,那么多了个黑色节点,就会影响上面的路径,所以需要把g节点变红来平衡一下。

如图(d-1):

这个时候万一g节点的父节点是红色节点,如图(d-4):
两个红色节点不能连续,还要调整,如果g节点的父亲节点为黑色,如图(d-5),那就不需要再调整:

 新增节点给红色:

cur = new Node(kv);cur->_col = RED;if (parent->_kv.first < kv.first){paret->_right = cur;cur->_parent = parent;}else if (_parent->_kv.first > kv.first){parent->_left = cur;cur->_parent = parent;}

父亲节点是红色就调整,是黑色就不用调整:

          while (parent->_col = RED){}

父亲节点可能在左边(e-1),也可能在右边(e-2):但是不论父亲节点在左在右,父亲节点的父亲父亲节点肯定是granparent节点。

先说图(e-1)的情况(即父亲节点在左):

按照之前的推演,应该先把父亲节点和叔叔节点变为黑色,然后为了防止影响了上面的节点,还要把grandparent节点变为红色:

while (parent&& parent->_col = RED)  //当父亲为红色时{Node* grandparent = parent->_parent;//祖父节点是父亲节点的父亲节点if (parent = grandparent->_left)//第一种情况,叔叔节点在右时{Node* uncle = grandparent->_right;//叔叔节点在祖父节点的右边if (unlce && unluce->_col == RED){uncle->_col = parent->_col = BLACK;//叔叔节点的颜色要变成黑色grandparent->_col = RED;//祖父节为了平衡,要把父亲节的颜色变为红色

即变为图(d-1):

此时又有两种情况  (d-4),(d-5):

 (d-4)(d-5)的情况会在后续处理。

继续向上处理

这个时候把祖父节点当做当前节点,让祖父节点去找它的父亲

		}while (parent&& parent->_col = RED)  //当父亲为红色时{Node* grandparent = parent->_parent;//祖父节点是父亲节点的父亲节点if (parent = grandparent->_left)//第一种情况,叔叔节点在右时{Node* uncle = grandparent->_right;//叔叔节点在祖父节点的右边if (unlce && unluce->_col == RED){uncle->_col = parent->_col = BLACK;//叔叔节点的颜色要变成黑色grandparent->_col = RED;//祖父节为了平衡,要把父亲节的颜色变为红色//继续向上处理cur = grandparent;  //把祖父节点当做当前节点parent = cur->parent; //祖父节点去找它的父亲}}}

这个时候万一祖父节点向上不再有节点,祖父节点就是最终节点怎么办?

祖父节点若上面没有节点,那么祖父节点就是作为根节点,根节点不能为红,把根节点再变黑。(r如图(D-5):

	 while (parent->_col = RED){Node* grandparent = parent->_parent;//祖父节点是父亲节点的父亲节点if (parent = grandparent->_left)//第一种情况,父亲节点是左子树,叔叔节点是右子树{Node* uncle = grandparent->_right;//叔叔节点在祖父节点的右边uncle->_col=parent->_col= BLACK;//叔叔节点的颜色要变成黑色grandparent->_col = RED;//祖父节为了平衡,要把父亲节的颜色变为红色}//把祖父当成当前节点,继续向上处理cur = grandparent;}//祖父节点向上不再有节点,祖父节点作为根节点,必须为黑色_root->_col = BACK;

情况二: cur为红,p为红,g为黑,u不存在/u存在且为黑

解决:把祖父右旋走 ,让父亲做新根,根就要为黑色节点,再把父亲变黑:

图(0-0)到(0-1)为演变过程:

while (parent&& parent->_col = RED)  //当父亲为红色时{Node* grandparent = parent->_parent;//祖父节点是父亲节点的父亲节点if (parent = grandparent->_left)//第一种情况,叔叔节点在右时{Node* uncle = grandparent->_right;//叔叔节点在祖父节点的右边if (unlce && unluce->_col == RED){uncle->_col = parent->_col = BLACK;//叔叔节点的颜色要变成黑色grandparent->_col = RED;//祖父节为了平衡,要把父亲节的颜色变为红色//继续向上处理cur = grandparent;  //把祖父节点当做当前节点parent = cur->parent; //祖父节点去找它的父亲}else                           //第二种情况:叔叔节点在左边{if (cur == parent->left)  //当前节点在父亲节点的左边{							//单旋+变色  RotateR(granparent);    //旋转:把祖父右旋走,让父亲做新根parent->_col = BLACK;   //变色:做新根就要为黑色节点grandparent->_col = RED;  //祖父为了平衡变红}}}}//祖父节点向上不再有节点,祖父节点作为根节点,必须为黑色_root->_col = BLACK;

情况三:p为g的左孩子,cur为p的右孩子(如图e-1)

解决方案

(A)p为g的左孩子,cur为p的右孩子,则针对p做左单旋转;相反,
(B)p为g的右孩子,cur为p的左孩子,则针对p做右单旋转

图(e-1)符合(A)解决方案,以下是对图(e-1)用(A)方案进行推演的过程:

else 父亲在右边

如图(f-3):

while (parent&& parent->_col == RED)  //当父亲为红色时{Node* grandparent = parent->_parent;//祖父节点是父亲节点的父亲节点if (parent = grandparent->_left)//第一种情况,叔叔节点在右时{Node* uncle = grandparent->_right;//叔叔节点在祖父节点的右边if (uncle && uncle->_col == RED){uncle->_col = parent->_col = BLACK;//叔叔节点的颜色要变成黑色grandparent->_col = RED;//祖父节为了平衡,要把父亲节的颜色变为红色//继续向上处理cur = grandparent;  //把祖父节点当做当前节点parent = cur->_parent; //祖父节点去找它的父亲}else                           //第二种情况:叔叔节点在左边{if (cur == parent->_left)  //当前节点在父亲节点的左边{							//单旋+变色  RotateR(grandparent);    //旋转:把祖父右旋走,让父亲做新根parent->_col = BLACK;   //变色:做新根就要为黑色节点grandparent->_col = RED;  //祖父为了平衡变红}else                  //当前节点在父亲节点右边{                     //双旋  RotateL(parent);   //父亲右旋RotateR(grandparent);  //祖父右旋cur->_col = BLACK;  //当前节点变黑grandparent->_col = RED;  //祖变红}break;}}else    //父亲在右边{Node* uncle = grandparent->_left;//叔叔节点在祖父节点的右边if (uncle = grandparent->_left)  //叔叔在左边//变色if (uncle && uncle->_col == parent->_col == RED)  //if叔叔存在且颜色为红色{uncle->_col = parent->_col = BLACK;  //叔叔父亲都变黑grandparent->_col = RED;   //祖父上面还有节点,要变红//继续向上处理cur = grandparent;}else //叔叔颜色为黑色{if (cur = parent->_right)  //叔叔在右边{RotateL(grandparent);  //左旋爷	parent->_col = BLACK;grandparent->_col = RED;  //祖变红}else   //叔叔在左边{//   g// u   p//   cRotateR(parent);  // 父亲右旋RotateL(grandparent);  //祖父旋走,让cur当根cur->_col = BLACK;   //根变黑色grandparent->_col = RED;  //祖父为了平衡变红色}}}}//祖父节点向上不再有节点,祖父节点作为根节点,必须为黑色_root->_col = BLACK;//找到了返回true1return true;
}

相关文章:

C++ RBTree 理论

目录 这个性质可以总结为 红黑树的最短最长路径 红黑树的路径范围 code 结构 搞颜色 类 插入 插入逻辑 新插入节点 思考&#xff1a;2. 检测新节点插入后&#xff0c;红黑树的性质是否造到破坏&#xff1f; 解决方法 变色 旋转变色 第三种情况&#xff0c;如果根…...

制作这种在线宣传画册,可轻松收获客户!

制作企业宣传画册&#xff0c;首先要了解企业制作宣传画册的需求以及展示方向&#xff0c;如今互联网时代&#xff0c;宣传画册的制作也应该要创新&#xff0c;而制作一本在线电子宣传画册用于线上宣传是非常有必要的。如何制作呢&#xff1f; 我们 可以使用FLBOOK平台在线制作…...

数据结构 | 图

最小生成树算法 Prime算法 算法思路&#xff1a;从已选顶点所关联的未选边中找出权重最小的边&#xff0c;并且生成树不存在环。 其中&#xff0c;已选顶点是构成最小生成树的结点&#xff0c;未选边是不属于生成树中的边。 例子&#xff1a; 第一步&#xff1a; 假设我们从顶…...

[文件读取]shopxo 文件读取(CNVD-2021-15822)

1.1漏洞描述 漏洞编号CNVD-2021-15822漏洞类型文件读取漏洞等级⭐⭐漏洞环境VULFOCUS攻击方式 描述: ShopXO是一套开源的企业级开源电子商务系统。 ShopXO存在任意文件读取漏洞&#xff0c;攻击者可利用该漏洞获取敏感信息。 1.2漏洞等级 高危 1.3影响版本 ShopXO 1.4漏洞复现…...

zookeeper应用之分布式锁

在分布式系统中多个服务需要竞争同一个资源时就需要分布式锁&#xff0c;这里使用zookeeper的临时顺序节点来实现分布式锁。 在节点X下创建临时顺序节点&#xff0c;getChildren()获取节点X的所有子节点&#xff0c;判断当前节点是否是第一个子节点&#xff0c;如果是就获取锁…...

20. 机器学习——PCA 与 LDA

机器学习面试题汇总与解析——PCA 与 LDA 本章讲解知识点 什么是数据降维PCA本专栏适合于Python已经入门的学生或人士,有一定的编程基础。 本专栏适合于算法工程师、机器学习、图像处理求职的学生或人士。 本专栏针对面试题答案进行了优化,尽量做到好记、言简意赅。这才是一…...

深度学习准召

准确率&#xff08;Precision&#xff09;和召回率&#xff08;Recall&#xff09;是两个用来评价一个模型的好坏的指标&#xff0c;它们有不同的意义&#xff1a; 准确率&#xff08;Precision&#xff09;&#xff1a;准确率是在所有被模型判断为正例的样本中&#xff0c;有…...

AtCoder ABC154

C - Distinct or Not 签到题&#xff0c;注意大小写和以前的不一样 D - Dice in Line 签到题2&#xff0c;用个窗口即可 E - Almost Everywhere Zero 数位DP&#xff08;搜索&#xff09;的例题 pos表示当前搜索到的位置&#xff08;开始为0&#xff0c;结束为n&#xff09; …...

可以非常明显地感受到,一场有关直播带货的暗流正在涌动

虽然有关直播带货的争论依然还在持续&#xff0c;但是&#xff0c;我们依然无法否认今年的双十一依然是直播带货的高光时刻。无论是以淘宝、京东和拼多多为代表的传统电商平台&#xff0c;还是以抖音、快手为代表的新电商平台&#xff0c;几乎都将今年双十一的重心放在了直播带…...

C++中的四种构造函数

在C中&#xff0c;有几种不同类型的构造函数&#xff0c;基于它们的特性和用途&#xff0c;可以将它们分类为以下四种&#xff1a; 默认构造函数&#xff08;Default Constructor&#xff09;: 如果没有为类定义任何构造函数&#xff0c;编译器将为其提供一个默认构造函数。这种…...

通过反射获取某个对象属性是否存在,并获取对象值

SneakyThrowspublic static void main(String[] args) {User user new User("张三", 10);// 获取指定属性名的值String propertyName "name2";Field[] fields user.getClass().getDeclaredFields();// 输出属性名Boolean flag false;for (Field field …...

【MySQL】存储过程与函数

一、存储过程 1、什么是存储过程 它是一组经过预先编译的SQL的封装它被存储在MySQL服务器上&#xff0c;当需要执行它时&#xff0c;客户端只需要向服务器发出调用命令&#xff0c;就可以把这一系列预先存储好的SQL语句全部执行 2、存储过程的优缺点 优点 简化操作&#xf…...

【数学】Pair of Topics—CF1324D

Pair of Topics—CF1324D 思路 很明显&#xff0c;需要对 a i a j > b i b j a_i a_j > b_i b_j ai​aj​>bi​bj​ 化简&#xff1a; a i − b i > b j − a j a_i - b_i > b_j - a_j ai​−bi​>bj​−aj​ a i − b i > − ( a j − b j ) a_…...

Qt文档阅读笔记-Fetch More Example解析

Fetch More Example这个例子说明了如何在视图模型上添加记录。 这个例子由一个对话框组成&#xff0c;在Directory的输入框中&#xff0c;可输入路径信息。应用程序会载入路径信息的文件信息等。不需要按回车键就能搜索。 当有大量数据时&#xff0c;需要对视图模型进行批量增…...

QtC++与QTableView详解

介绍 QTableView 是 Qt 框架中用于显示表格数据的视图控件&#xff0c;它是 QAbstractItemView 类的子类。QTableView 通常与 QStandardItemModel 或者自定义的数据模型一起使用&#xff0c;用于展示二维表格型数据。以下是对 QTableView 的详细讲解和在 Qt 中的作用&#xff…...

HG/T 6002-2022 氟树脂粉末涂料检测

氟树脂粉末涂料是指以三氟氯乙烯-乙烯基醚、四氟乙烯-乙烯基醚等交联型氟树脂或聚偏二氟乙烯PVDF树脂为主要成膜物质&#xff0c;可加入颜料、填料、助剂、固化剂等制成的粉末涂料&#xff0c;主要用于铝型材、幕墙金属板、家电等表面的装饰和保护。 HG/T 6002-2022 氟树脂粉末…...

【java】idea可以连接但看不到database相关的files

问题 idea右侧有database工具栏&#xff0c;但点击没有在recent files看到数据库相关文件 问题排查 点击 help-> show log in explorer查看日志 发现显示 2023-11-13 10:28:09,694 [1244376] INFO - #c.i.c.ComponentStoreImpl - Saving appDebuggerSettings took 22…...

信驰达科技加入车联网联盟(CCC),推进数字钥匙发展与应用

CCC)的会员。 图 1 深圳信驰达正式成为车联网联盟(CCC)会员 车联网联盟(CCC)是一个跨行业组织&#xff0c;致力于推动智能手机与汽车连接解决方案的技术发展。CCC涵盖了全球汽车和智能手机行业的大部分企业&#xff0c;拥有150多家成员公司。CCC成员公司包括智能手机和汽车制造…...

p9 Eureka-搭建eureka服务

1.在user-service项目引入spring-cloud-starter-netflix-eureka-client的依赖 <dependencies><dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-netflix-eureka-server</artifactId></depen…...

阶段七-Day01-SpringMVC

一、Sping MVC的介绍 1. 使用Front(前端)设计模式改写代码 1.1 目前我们的写法 目前我们所写的项目&#xff0c;持久层、业务层的类都放入到Spring容器之中了。他们之间需要注入非常方便&#xff0c;只需要通过Autowired注解即可。 但是由于Servlet整个生命周期都是被Tomca…...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手&#xff1a;借助大模型技术&#xff0c;开发能根据用户输入的主题、风格等要求&#xff0c;生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用&#xff0c;帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

生成 Git SSH 证书

&#x1f511; 1. ​​生成 SSH 密钥对​​ 在终端&#xff08;Windows 使用 Git Bash&#xff0c;Mac/Linux 使用 Terminal&#xff09;执行命令&#xff1a; ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​&#xff1a; -t rsa&#x…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

反射获取方法和属性

Java反射获取方法 在Java中&#xff0c;反射&#xff08;Reflection&#xff09;是一种强大的机制&#xff0c;允许程序在运行时访问和操作类的内部属性和方法。通过反射&#xff0c;可以动态地创建对象、调用方法、改变属性值&#xff0c;这在很多Java框架中如Spring和Hiberna…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

ios苹果系统,js 滑动屏幕、锚定无效

现象&#xff1a;window.addEventListener监听touch无效&#xff0c;划不动屏幕&#xff0c;但是代码逻辑都有执行到。 scrollIntoView也无效。 原因&#xff1a;这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作&#xff0c;从而会影响…...