当前位置: 首页 > news >正文

算法学习打卡day45|动态规划:股票问题总结

Leetcode股票问题总结篇

在这里插入图片描述

  • 动态规划的股票问题一共六道题,买卖股票最佳时机和买卖股票手续费都是一个类型的问题,维护好买入和卖出两个状态即可,方法一摸一样。而冷冻期也差不多就是状态多了点,买入、保持卖出、当日卖出、以及冷冻期四个状态。
  • 做题方法还是动态规划五部曲:
    • 明确dp数组含义,这里六道题全部第i天都是手里买入状态或者卖出状态的现金数是多少,这篇文章下标0代表未持有,下标1代表持有。
    • 写出递推公式,下面写了最基本的,其他题的公式都是在这个基础上做了修改的:
      	dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] + prices[i]);dp[i][1] = max(dp[i - 1][1], -prices[i]);
      
      • 最佳时机2那道题就是在这个基础上,修改买入时的递推公式为dp[i][1] = max(dp[i - 1][1], dp[i - 1][0]-prices[i - 1]);
      • 最佳时机3那道题是增加两个状态表示第二次买入和卖出:
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
        
      • 最佳时机4那道题是增加到2 * k个状态,那么内层就要变为双层循环为各个状态赋值了。
            dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - 1] - prices[i]);dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] + prices[i]);
        
      • 冻结期那道题的递推公式就稍微复杂了,需要维护四个状态,分别是买入、保持卖出、当日卖出、以及冷冻期。
        	dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3], dp[i - 1][1]) - prices[i]);dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);dp[i][2] = dp[i - 1][0] + prices[i];dp[i][3] = dp[i - 1][2];
        
      • 含手续费这道题和第二道题一摸一样,在卖出时减去手续费就行。
    • 初始化:每次买入的时候必须初始化为-price[0],其他赋值为0即可。
    • 遍历顺序:由于需要用到 i - 1的资金,所以从前往后遍历

121. 买卖股票的最佳时机

力扣题目链接

代码实现:

int maxProfit(vector<int>& prices) {vector<vector<int>> dp(prices.size() + 1, vector(2, 0));dp[1][0] = 0, dp[1][1] = -prices[0];//二维数组0代表不持有,1代表持有for (int i = 2; i <= prices.size(); ++i) {dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] + prices[i - 1]);dp[i][1] = max(dp[i - 1][1], -prices[i - 1]);}return dp[prices.size()][0];}
  • 动态规划二维数组滚动数组优化方式:
int maxProfit(vector<int>& prices) {vector<vector<int>> dp(2, vector(2, 0));//只记录当前天和前一天的状态即可dp[0][0] = 0, dp[0][1] = -prices[0];//二维数组0代表不持有,1代表持有for (int i = 1; i < prices.size(); ++i) {dp[i % 2][0] = max(dp[(i - 1) % 2][0], dp[(i - 1) % 2][1] + prices[i]);dp[i % 2][1] = max(dp[(i - 1) % 2][1], -prices[i]);//看实现通过求余,每次取的都是前一个元素值}return dp[(prices.size() + 1) % 2][0];//用+1,因为数组可能为空}
  • 动态规划一维数组实现法,比二维实现更简洁
int maxProfit(vector<int>& prices) {vector<int> dp(2, 0);//只记录当前天的状态即可dp[0] = 0, dp[1] = -prices[0];//0代表不持有,1代表持有for (int i = 1; i < prices.size(); ++i) {dp[0] = max(dp[0], dp[1] + prices[i]);dp[1] = max(dp[1], -prices[i]);}return dp[0];}
  • 贪心法实现(每次更新左边界为最小值,然后不断更新result结果):
int maxProfit(vector<int>& prices) {int low = INT_MAX, result = 0;for (int i = 0; i < prices.size(); ++i) {low = min(low, prices[i]);result = max(result, prices[i] - low);}return result;}

买卖股票的最佳时机2

力扣题目链接
思路:

  • 在上题基础上增加了买卖次数,修改买入时的计算方法即可。

代码实现

  • 普通动态规划想法,直接计算每天的利润(和贪心类似)
int maxProfit(vector<int>& prices) {//dp[i] = max(dp[i - 1], dp[i - 1] + prices[i] - prices[i - 1]);vector<int> dp(prices.size(), 0);for (int i = 1; i < prices.size(); ++i) {dp[i] = max(dp[i - 1], dp[i - 1] + prices[i] - prices[i - 1]);}   return dp[prices.size() - 1];}
  • 用双状态实现的方法(这里用一维数组实现的,也可以是二维)
int maxProfit(vector<int>& prices) {vector<int> dp(2, 0);dp[0] = 0, dp[1] = -prices[0];for (int i = 1; i < prices.size(); ++i) {dp[0] = max(dp[0], dp[1] + prices[i]);dp[1] = max(dp[1], dp[0] - prices[i]);}return dp[0];}
  • 贪心法
int maxProfit(vector<int>& prices) {int profit = 0;for (int i = 1; i < prices.size(); i++) {profit += max(prices[i] - prices[i - 1], 0);}return profit;}
  • 双指针法
int maxProfit(vector<int>& prices) {int profit = 0, buy_index = 0;for (int i = 0; i < prices.size() - 1; i++) {if (prices[i] > prices[i + 1]) {profit += prices[i] - prices[buy_index];buy_index = i + 1;continue;}if (i + 1 == prices.size() - 1) {profit += prices[i + 1] - prices[buy_index];}}return profit;}

买卖股票的最佳时机3

力扣题目链接
思路:

  • 这道题规定只能买卖两次,实现方法上面已经写过了,直接上代码

代码实现

int maxProfit(vector<int>& prices) {vector<vector<int>> dp(prices.size(), vector<int>(5, 0));dp[0][1] = -prices[0], dp[0][3] = -prices[0];//相当于当天买卖一次后再次买入for (int i = 1; i < prices.size(); ++i) {dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);}return dp[prices.size() - 1][4];}

买卖股票的最佳时机4

力扣题目链接

思路:
买卖次数规定为k次,需要利用循环给每次买卖赋值。

代码实现

int maxProfit(int k, vector<int>& prices) {vector<vector<int>> dp(prices.size(), vector<int>(k * 2 + 1, 0));for (int i = 1; i < 2 * k + 1; i += 2) {dp[0][i] = -prices[0];}for (int i = 1; i < prices.size(); ++i) {for (int j = 1; j <= 2 * k - 1; j += 2) {dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - 1] - prices[i]);dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] + prices[i]);}}return dp[prices.size() - 1][2 * k];}

买卖股票的最佳时机含冷冻期

力扣题目链接
题目描述:
在第二题基础上,增加了冷冻期,需要维护四个状态

代码实现

int maxProfit(vector<int>& prices) {int len = prices.size();vector<vector<int>> dp(len, vector<int>(4, 0));dp[0][0] = -prices[0];for (int i = 1; i < len; ++i) {dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3], dp[i - 1][1]) - prices[i]);dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);dp[i][2] = dp[i - 1][0] + prices[i];dp[i][3] = dp[i - 1][2];}return max(dp[len - 1][1], max(dp[len - 1][2], dp[len - 1][3]));}

买卖股票的最佳时机含手续费

力扣题目链接
题目描述:
和第二题基本一样,卖出时减去手续费就行了

代码实现

int maxProfit(vector<int>& prices, int fee) {vector<vector<int>> dp(prices.size(), vector<int>(2, 0));dp[0][1] = -prices[0];for (int i = 1; i < prices.size(); ++i) {dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] + prices[i] - fee);dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);}return dp[prices.size() - 1][0];}

相关文章:

算法学习打卡day45|动态规划:股票问题总结

Leetcode股票问题总结篇 动态规划的股票问题一共六道题&#xff0c;买卖股票最佳时机和买卖股票手续费都是一个类型的问题&#xff0c;维护好买入和卖出两个状态即可&#xff0c;方法一摸一样。而冷冻期也差不多就是状态多了点&#xff0c;买入、保持卖出、当日卖出、以及冷冻期…...

内网环境下让容器上网,并制作一个httpd容器

1.下载基础镜像 上一次&#xff0c;我们通过正向互联网代理在内网环境中&#xff0c;搭建了一个docker环境&#xff0c;具体环境如下&#xff1a; 1) 内网docker服务器&#xff1a;192.168.123.1&#xff0c;操作系统为&#xff1a;redhat 7.9 2) 代理服务器(可通外网)&#…...

多个Obj模型合并

MergeObj&#xff08;合并Obj模型&#xff09; 1 概述 由于项目原因&#xff0c;需要下载谷歌地图上的模型&#xff0c;关于谷歌模型下载的&#xff0c;见我的CSDN博客. 由于下载谷歌地图上的数据&#xff0c;会分多个模块下载。下载完成后&#xff0c;怎么合并&#xff0c;在…...

Qt调用python写好的函数,利用Python丰富的图像处理库来完成各种任务

一、前言 近年来,Python已经成为一种广泛应用于科学计算、数据分析和机器学习等领域的强大编程语言。其丰富的生态系统和大量的开源库使得Python成为处理图像、音频、视频和其他多媒体数据的理想选择。在图像处理领域,Python提供了许多方便的函数和库,如OpenCV、PIL(Pytho…...

第六章:接口

系列文章目录 文章目录 系列文章目录前言一、接口二、实现接口与继承类三、接口的多态特性总结 前言 接口是更加抽象的类。 一、接口 usb插槽就是现实中的接口&#xff0c;厂家都遵守了统一的规定包括尺寸&#xff0c;排线等。这样的设计在java编程中也是大量存在的。 packa…...

【Java 进阶篇】JQuery DOM操作:CRUD操作的前端魔法

在前端开发的舞台上&#xff0c;CRUD&#xff08;Create, Read, Update, Delete&#xff09;操作是一种极为重要的技能&#xff0c;它涉及对页面元素的增删改查。而JQuery&#xff0c;这位前端开发的魔法师&#xff0c;为我们提供了便捷而强大的方法&#xff0c;使得CRUD操作变…...

如何实现Redisson分布式锁

首先&#xff0c;不要将分布式锁想的太复杂&#xff0c;如果我们只是平时业务中去使用&#xff0c;其实不算难&#xff0c;但是很多人写的文章不能让人快速上手&#xff0c;接下来&#xff0c;一起看下Redisson分布式锁的快速实现 Redisson 是一个在 Redis 的基础上实现的 Java…...

Kafka(三)生产者发送消息

文章目录 生产者发送思路自定义序列化类配置生产者参数提升吞吐量 发送消息关闭生产者结语示例源码仓库 生产者发送思路 如何确保消息格式正确的前提下最终一定能发送到Kafka? 这里的实现思路是 ack使用默认的all开启重试在一定时间内重试不成功&#xff0c;则入库&#xff…...

2020年五一杯数学建模C题饲料混合加工问题解题全过程文档及程序

2020年五一杯数学建模 C题 饲料混合加工问题 原题再现 饲料加工厂需要加工一批动物能量饲料。饲料加工需要原料&#xff0c;如加工猪饲料需要玉米、荞麦、稻谷等。加工厂从不同的产区收购了原料&#xff0c;原料在收购的过程中由于运输、保鲜以及产品本身属性等原因&#xff…...

公益SRC实战|SQL注入漏洞攻略

目录 一、信息收集 二、实战演示 三、使用sqlmap进行验证 四、总结 一、信息收集 1.查找带有ID传参的网站&#xff08;可以查找sql注入漏洞&#xff09; inurl:asp idxx 2.查找网站后台&#xff08;多数有登陆框&#xff0c;可以查找弱口令&#xff0c;暴力破解等漏洞&…...

Word软件手动安装Zotero插件

文章目录 Word软件手动安装Zotero插件方法一方法二 参考资料 Word软件手动安装Zotero插件 方法一 关闭word在zotero中依次点击编辑—首选项—引用—文字编辑软件—重新安装加载项Microsoft word 方法二 寻找Zotero.dotm存储位置&#xff0c; 例如D:\Program Files\Zotero\ext…...

idea 插件推荐第二期

文章目录 便捷开发CodeGlance Pro (代码缩略图)GenerateAllSetter&#xff08;快速生成对象所有set方法&#xff09;GsonFormatPlus&#xff1a;json转实体RestfulToolkitX&#xff08;找到controller快捷请求接口&#xff09; 美化activate-power-mode-x (敲击计数、动效)Nyan…...

plsql查询中文出现乱码

添加环境变量&#xff1a;如下 变量名&#xff1a;NLS_LANG 变量值&#xff1a;SIMPLIFIED CHINESE_CHINA.ZHS16GBK 变量名&#xff1a;TNS_ADMIN 变量值&#xff1a;D:\instantclient_11_2\network\admin 在Path中添加instantclient_11_2存放路径...

【Docker】五分钟完成Docker部署Java应用,你也可以的!!!

文章目录 前言一、部署步骤1.项目结构2.Dockerfile3.docker-compose.yml4.启动5.常用命令 总结 前言 本文基于Docker Compose部署Java应用&#xff0c;请确保你已经安装了Docker和Docker Compose。 十分钟就能上手docker&#xff1f;要不你也试试&#xff1f; 一、部署步骤 1…...

如何准备2024年的系统设计面试?

1 前言 如果你正在准备软件工程师或软件开发人员的面试,那么你可能知道由于其开放性质和广泛性,准备系统设计是多么困难,但同时你也不能忽略它。在软件工程界,如果你正在申请高级工程师/主管/架构师或更高级别的角色,系统设计是最受追捧的技能,也是整个过程中最重要的环节之一…...

【开源】基于JAVA的电子元器件管理系统

目录 一、摘要1.1 项目简介1.2 项目详细录屏 二、研究内容三、界面展示3.1 登录&注册&主页3.2 元器件单位模块3.3 元器件仓库模块3.4 元器件供应商模块3.5 元器件品类模块3.6 元器件明细模块3.7 元器件类型模块3.8 元器件采购模块3.9 元器件领用模块3.10 系统基础模块 …...

足底筋膜炎怎么治疗治愈

足底筋膜炎又称为跖筋膜炎&#xff0c;跖筋膜主要在足弓下方&#xff0c;它维持足弓稳定性&#xff0c;对于喜欢长期长跑、跳远&#xff0c;或者越野运动&#xff0c;或者部队中的士兵进行拉练&#xff0c;还有需要久坐或者久站的人群中&#xff0c;容易发生跖筋膜炎。治疗方法…...

Keil工程忽略文件.gitignore、自动删除脚本:keilkilll.bat、自动生成目录文件列表脚本

Keil工程忽略文件&#xff1a;.gitignore 忽略规则 *.rar *.o *.d *.crf *.htm *.dep *.map *.bak *.lnp *.lst *.ini *.iex *.sct *.scvd *.dbg* *.uvguix.* *Log.*#忽略.gitignore根目录下的文件夹&#xff0c;根据自己的需要修改 RTE/ Templates/ Examples/ OBJ/#不能忽略…...

软考高级职称哪个好考?明确给你答案

软考考试分为初、中、高三级&#xff0c;其中高级5个方向分别为系统分析师、信息系统项目管理师、网络规划设计师、系统架构设计师、系统规划与管理师。软考高级职称考什么好&#xff1f;有很多人是因为要评高级职称而选择参考软考高级资格考试&#xff0c;那么软考高级里哪个资…...

智能客服外包服务适用于哪些行业?

在当今快节奏的商业环境下&#xff0c;企业需要更高效、更智能且更灵活的客户服务解决方案。而智能客服外包服务正是满足这一需求的利器。不仅可以帮助企业提升客户服务的品质和效率&#xff0c;还能降低企业的运营成本。智能客服外包服务适用于哪些行业呢&#xff1f; 1.电子…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候&#xff0c;遇到了一些问题&#xff0c;记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题&#xff1a;3564. 季节性销售分析 题目&#xff1a; 表&#xff1a;sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云

目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

iview框架主题色的应用

1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题&#xff0c;无需引入&#xff0c;直接可…...

Python 实现 Web 静态服务器(HTTP 协议)

目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1&#xff09;下载安装包2&#xff09;配置环境变量3&#xff09;安装镜像4&#xff09;node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1&#xff09;使用 http-server2&#xff09;详解 …...

vue3 daterange正则踩坑

<el-form-item label"空置时间" prop"vacantTime"> <el-date-picker v-model"form.vacantTime" type"daterange" start-placeholder"开始日期" end-placeholder"结束日期" clearable :editable"fal…...

ubuntu系统文件误删(/lib/x86_64-linux-gnu/libc.so.6)修复方案 [成功解决]

报错信息&#xff1a;libc.so.6: cannot open shared object file: No such file or directory&#xff1a; #ls, ln, sudo...命令都不能用 error while loading shared libraries: libc.so.6: cannot open shared object file: No such file or directory重启后报错信息&…...

第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10+pip3.10)

第一篇&#xff1a;Liunx环境下搭建PaddlePaddle 3.0基础环境&#xff08;Liunx Centos8.5安装Python3.10pip3.10&#xff09; 一&#xff1a;前言二&#xff1a;安装编译依赖二&#xff1a;安装Python3.10三&#xff1a;安装PIP3.10四&#xff1a;安装Paddlepaddle基础框架4.1…...