python图神经网络,注意力机制、Transformer模型、目标检测算法、强化学习等
近年来,伴随着以卷积神经网络(CNN)为代表的深度学习的快速发展,人工智能迈入了第三次发展浪潮,AI技术在各个领域中的应用越来越广泛
本文重点为:注意力机制、Transformer模型(BERT、GPT-1/2/3/3.5/4、DETR、ViT、Swin Transformer等)、生成式模型(变分自编码器VAE、生成式对抗网络GAN、扩散模型Diffusion Model等)、目标检测算法(R-CNN、Fast R-CNN、Faster R-CNN、YOLO、SDD等)、图神经网络(GCN、GAT、GIN等)、强化学习(Q-Learning、DQN等)、深度学习模型可解释性与可视化方法(CAM、Grad-CAM、LIME、t-SNE等)的基本原理及Python代码实现方法
注意力(Attention)机制详解
注意力机制(Attention Mechanism)源于对人类视觉的研究。在认知科学中,由于信息处理的瓶颈,人类会选择性地关注所有信息的一部分,同时忽略其他可见的信息。上述机制通常被称为注意力机制
1、注意力机制的背景和动机(为什么需要注意力机制?注意力机制的起源和发展)。
2、注意力机制的基本原理:用机器翻译任务带你了解Attention机制、如何计算注意力权重?
3、注意力机制的一些变体(硬性注意力机制、软性注意力机制、键值对注意力机制、多头注意力机制、多头注意力机制、……)。
4、注意力机制的可解释性(如何使用注意力机制进行模型解释?注意力机制的可视化技术?)
5、案例演示 6、实操练习
Transformer模型详解
相比 RNN 网络结构,其最大的优点是可以并行计算
1、Transformer模型拓扑结构
2、Transformer模型工作原理(为什么Transformer模型需要位置信息?位置编码的计算方法?Transformer模型的损失函数?)
3、自然语言处理(NLP)领域的Transformer模型:BERT、GPT-1 / GPT-2 / GPT-3 / GPT-3.5 / GPT-4(模型的总体架构、输入和输出形式、预训练目标、预训练数据的选择和处理、词嵌入方法、GPT系列模型的改进与演化、……)。
4、计算视觉(CV)领域的Transformer模型:DETR / ViT / Swin Transformer(DERT:基于Transformer的检测头设计、双向匹配损失;ViT:图像如何被分割为固定大小的patches?如何将图像patches线性嵌入到向量中?Transformer在处理图像上的作用?Swin:窗口化自注意力机制、层次化的Transformer结构、如何利用位移窗口实现长范围的依赖?)
5、案例演示 6、实操练习
生成式模型详解
在机器学习中,生成模型可以用来直接对数据建模(例如根据某个变量的概率密度函数进行数据采样),也可以用来建立变量间的条件概率分布。条件概率分布可以由生成模型根据贝叶斯定理形成。
1、变分自编码器VAE(自编码器的基本结构与工作原理、变分推断的基本概念及其与传统贝叶斯推断的区别、VAE的编码器和解码器结构及工作原理)。
2、生成式对抗网络GAN(GAN提出的背景和动机、GAN的拓扑结构和工作原理、生成器与判别器的角色、GAN的目标函数)。
3、扩散模型Diffusion Model(扩散模型的核心概念?如何使用随机过程模拟数据生成?扩散模型的工作原理)。
4、跨模态图像生成DALL.E(什么是跨模态学习?DALL.E模型的基本架构、模型训练过程)。
5、案例演示 6、实操练习
目标检测算法详解
1. 目标检测任务与图像分类识别任务的区别与联系。
2. 两阶段(Two-stage)目标检测算法:R-CNN、Fast R-CNN、Faster R-CNN(RCNN的工作原理、Fast R-CNN和Faster R-CNN的改进之处 )。
3. 一阶段(One-stage)目标检测算法:YOLO模型、SDD模型(拓扑结构及工作原理)。
4. 案例演示 5、实操练习
图神经网络详解
图神经网络(Graph Neural Network,GNN)是指使用神经网络来学习图结构数据,提取和发掘图结构数据中的特征和模式,满足聚类、分类、预测、分割、生成等图学习任务需求的算法总称
1. 图神经网络的背景和基础知识(什么是图神经网络?图神经网络的发展历程?为什么需要图神经网络?)
2. 图的基本概念和表示(图的基本组成:节点、边、属性;图的表示方法:邻接矩阵;图的类型:无向图、有向图、加权图)。
3. 图神经网络的工作原理(节点嵌入和特征传播、聚合邻居信息的方法、图神经网络的层次结构)。
4. 图卷积网络(GCN)的工作原理。
5. 图神经网络的变种和扩展:图注意力网络(GAT)、图同构网络(GIN)、图自编码器、图生成网络。
6、案例演示 7、实操练习
强化学习详解
1、强化学习的基本概念和背景(什么是强化学习?强化学习与其他机器学习方法的区别?强化学习的应用领域有哪些?
2、Q-Learning(马尔可夫决策过程、Q-Learning的核心概念、什么是Q函数?Q-Learning的基本更新规则)。
3、深度Q网络(DQN)(为什么传统Q-Learning在高维或连续的状态空间中不再适用?如何使用神经网络代替Q表来估计Q值?目标网络的作用及如何提高DQN的稳定性?)
4、案例演示 5、实操练习
深度学习模型可解释性与可视化方法详解
1、什么是模型可解释性?为什么需要对深度学习模型进行解释?
2、可视化方法有哪些(特征图可视化、卷积核可视化、类别激活可视化等)?
3、类激活映射CAM(Class Activation Mapping)、梯度类激活映射GRAD-CAM、局部可解释模型-敏感LIME(Local Interpretable Model-agnostic Explanation)、等方法原理讲解。
4、t-SNE的基本概念及使用t-SNE可视化深度学习模型的高维特征。
5、案例演示 6、实操练习
相关文章:
python图神经网络,注意力机制、Transformer模型、目标检测算法、强化学习等
近年来,伴随着以卷积神经网络(CNN)为代表的深度学习的快速发展,人工智能迈入了第三次发展浪潮,AI技术在各个领域中的应用越来越广泛 本文重点为:注意力机制、Transformer模型(BERT、GPT-1/2/3/…...
安装包 amd,amd64, arm,arm64 都有什么区别
现在的安装包也不省心,有各种版本都不知道怎么选。 根据你安装的环境配置。 amd: 32位X86 amd64: 64位X86 arm: 32位ARM arm64: 64位ARM amd64是X86架构的CPU,64位版。amd64又叫X86_64。主流的桌面PC&am…...
Ansible 企业实战详解
一、ansible简介1. ansible是什么2.ansible的特点ansible的架构图 二、ansible 任务执行1、ansible 任务执行模式2、ansible 执行流程3、ansible 命令执行过程 二 .Ansible安装部署1.yum安装2.ansible 程序结构3、ansible配置文件查找顺序4、ansible配置文件5.ansible自动化配置…...
云贝教育 |【技术文章】pg缓存插件介绍
一、pg_buffercache 主要作用是查看pg的共享池中缓存的对象信息 1.1 创建扩展 postgres# create extension pg_buffercache; CREATE EXTENSION 1.2 查看视图pg_buffercache postgres# \d pg_buffercacheView "public.pg_buffercache"Column | Type | Co…...
Kohana框架的安装及部署
Kohana框架的安装及部署 tipsKohana安装以及部署1、重要文件作用说明1.1 /index.php1.2 /application/bootstrap.php 2、项目结构3、路由配置3.1、隐藏项目入口的路由3.2、配置默认路由3.3、配置自定义的路由(Controller目录下的控制器)3.4、配置自定义的路由(Controller/direc…...
无重复字符的最长子串 Golang leecode_3
刚开始的思路,先不管效率,跑出来再说,然后再进行优化。然后就有了下面的暴力代码: func lengthOfLongestSubstring(s string) int {// count 用来记录当前最长子串长度var count int// flag 用来对下面两个 if 语句分流var flag …...
Vue项目的学习一
1、Vue项目里面的.js文件里面对象添加属性 例如:在对象:row,需要在对象row里面添加一个属性状态:type,使用里面的Vue.set函数 Vue.set(参数1,参数2,参数3) Vue.set(row,type,false)解析: 参数1࿱…...
k8s备份
cpu 磁盘io 往主的写,同步给备 rootk8s-etcd02:~# cat /etc/systemd/system/etcd.service [Unit] DescriptionEtcd Server Afternetwork.target Afternetwork-online.target Wantsnetwork-online.target Documentationhttps://github.com/coreos[Service] Typen…...
python自己造轮子使用
项目结构 首先,需要按照下列格式组织你的 package project (项目名称,随意,与package无关)|----package (这个才是包名)|----…...
Elastic stack8.10.4搭建、启用安全认证,启用https,TLS,SSL 安全配置详解
ELK大家应该很了解了,废话不多说开始部署 kafka在其中作为消息队列解耦和让logstash高可用 kafka和zk 的安装可以参考这篇文章 深入理解Kafka3.6.0的核心概念,搭建与使用-CSDN博客 第一步、官网下载安装包 需要 elasticsearch-8.10.4 logstash-8.…...
解决npm报错Error: error:0308010C:digital envelope routines::unsupported
解决npm报错Error: error:0308010C:digital envelope routines::unsupported。 解决办法;终端执行以下命令(windows): set NODE_OPTIONS--openssl-legacy-provider然后再执行 npm命令成功:...
高防IP是什么?有什么优势?
一.高防IP的概念 高防IP是指高防机房所提供的IP段,一种付费增值服务,主要是针对网络中的DDoS攻击进行保护。用户可以通过配置高防IP,把域名解析到高防IP上,引流攻击流量,确保源站的稳定可靠。 二.高防IP的原理 高防I…...
php费尔康框架phalcon(费尔康)框架学习笔记
phalcon(费尔康)框架学习笔记 以实例程序invo为例(invo程序放在网站根目录下的invo文件夹里,推荐php版本>5.4) 环境不支持伪静态网址时的配置 第一步: 在app\config\config.ini文件中的[application]节点内修改baseUri参数值为/invo/index.php/或…...
StartUML的基本使用
文章目录 简介和安装创建包创建类视图时序图 简介和安装 最近在学习一个项目的时候用到了StartUML来构造项目的类图和时序图 虽然vs2019有类视图,但是也不是很清晰,并没有生成uml图,但是宇宙最智能的IDE IDEA有生成uml图的功能 下面就简单介…...
飞天使-django概念之urls
urls 容易搞混的概念,域名,主机名,路由 网站模块多主机应用 不同模块解析不同的服务器ip地址 网页模块多路径应用 urlpatterns [ path(‘admin/’, admin.site.urls), path(‘’, app01views.index), path(‘movie/’, app01views.movi…...
MongoDB分片集群搭建
----前言 mongodb分片 一般用得比较少,需要较多的服务器,还有三种的角色 一般把mongodb的副本集应用得好就足够用了,可搭建多套mongodb复本集 mongodb分片技术 mongodb副本集可以解决数据备份、读性能的问题,但由于mongodb副本集是…...
modbus报文
MODBUS规约报文解析-CSDN博客...
flutter报错: library “libflutter.so“ not found
修改android/app/build.gradle defaultConfig { // TODO: Specify your own unique Application ID (https://developer.android.com/studio/build/application-id.html). applicationId "cn.rentsoft.flutter.openim.consumer" // You can update the …...
MR混合现实情景实训教学系统模拟历史情景
二、应用场景 1. 古代战争场景:通过MR混合现实情景实训教学系统,学生可以亲身体验古代战争的场景,如战场布置、战术运用等。这不仅有助于学生更好地理解古代战争的特点,还能够培养他们的团队协作和战略思维能力。 2. 历史文化古…...
计算机视觉的应用16-基于pytorch框架搭建的注意力机制,在汽车品牌与型号分类识别的应用
大家好,我是微学AI,今天给大家介绍一下计算机视觉的应用16-基于pytorch框架搭建的注意力机制,在汽车品牌与型号分类识别的应用,该项目主要引导大家使用pytorch深度学习框架,并熟悉注意力机制模型的搭建,这个…...
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...
微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...
Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...
《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...
苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...
A2A JS SDK 完整教程:快速入门指南
目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库ÿ…...
echarts使用graphic强行给图增加一个边框(边框根据自己的图形大小设置)- 适用于无法使用dom的样式
pdf-lib https://blog.csdn.net/Shi_haoliu/article/details/148157624?spm1001.2014.3001.5501 为了完成在pdf中导出echarts图,如果边框加在dom上面,pdf-lib导出svg的时候并不会导出边框,所以只能在echarts图上面加边框 grid的边框是在图里…...
