sklearn笔记:neighbors.NearestNeighbors
1 最近邻
class sklearn.neighbors.NearestNeighbors(*, n_neighbors=5, radius=1.0, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, n_jobs=None)
- 邻居搜索算法的选择通过关键字 'algorithm' 控制,它必须是 ['auto', 'ball_tree', 'kd_tree', 'brute'] 中的一个。当传递默认值 'auto' 时,算法尝试从训练数据中确定最佳方法。
2 主要参数
n_neighbors | 查询多少个邻居 |
radius | 用于 radius_neighbors 查询的参数空间范围 |
algorithm | ({‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, 默认为 ‘auto’): 用于计算最近邻居的算法:
|
leaf_size | 传递给 BallTree 或 KDTree 的叶子大小 这可以影响树的构建和查询速度,以及存储树所需的内存 |
metric | 用于距离计算的度量。默认为 "minkowski",当 p = 2 时,结果为标准欧几里得距离 |
3 主要方法
3.1 kneighbors
- 寻找一个点的 K 个最近邻居。它返回每个点的邻居的索引和到邻居的距离
参数:
X | 查询点或点集 |
n_neighbors | (int)每个样本所需的邻居数量 |
return_distance | (bool)是否返回距离 |
返回值:
neigh_dist | (n_queries, n_neighbors)的ndarry 到点的距离的数组,仅当 return_distance=True 时存在 |
neigh_ind | (n_queries, n_neighbors) 最近点的索引 |
举例:
samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
from sklearn.neighbors import NearestNeighbors
neigh = NearestNeighbors(n_neighbors=2)
neigh.fit(samples)
neigh.kneighbors([[1., 1., 1.]],n_neighbors=1)
#(array([[0.5]]), array([[2]], dtype=int64))
3.1.1 kneighbors中的n_neighbors和NearestNeighbors的区别是什么?
- NearestNeighbors中的是默认的全局设置
- kneighbors中的是仅限于特定方法调用的局部设置,如果在方法调用中指定了
n_neighbors
,它将优先于构造函数中指定的值
3.2 kneighbors_graph
kneighbors_graph(X=None, n_neighbors=None, mode='connectivity')
参数:
X | 查询点或点集 |
n_neighbors | 每个样本的邻居数量 |
mode | ({‘connectivity’, ‘distance’}, 默认为 ‘connectivity’) 返回矩阵的类型:
|
返回一个稀疏矩阵
samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
from sklearn.neighbors import NearestNeighbors
neigh = NearestNeighbors(n_neighbors=2)
neigh.fit(samples)
neigh.kneighbors_graph([[1., 1., 1.]]).toarray()
#array([[0., 1., 1.]])
#和后两个相连,和第一个不连
3.3 radius_neighbors
radius_neighbors(X=None, radius=None, return_distance=True, sort_results=False)
找到一个点或多个点周围给定半径内的邻居
返回每个点从数据集中位于查询数组点周围大小为半径的球内的点的索引和距离。位于边界上的点也包括在结果中
参数:
X | 查询点或点集 |
radius | 返回邻居的限制距离 |
return_distance | (bool,默认为True):是否返回距离 |
sort_results | (bool,默认为False) 如果为 True,距离和索引将在返回前按距离递增排序 |
返回
neigh_dist | 到每个点的距离的数组 |
neigh_ind | 索引数组 |
import numpy as np
samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
from sklearn.neighbors import NearestNeighbors
neigh = NearestNeighbors(radius=1.2,n_neighbors=2)
neigh.fit(samples)
neigh.radius_neighbors([[1., 1., 1.]])
'''
(array([array([0.5])], dtype=object),array([array([2], dtype=int64)], dtype=object))
'''
虽然n_neighbors也是2,但是举例卡在1.2,所以返回的也只有一个
3.4 radius_neighbors_graph
和neighbors_graph类似,在radius限制下的neighbors_graph
相关文章:
sklearn笔记:neighbors.NearestNeighbors
1 最近邻 class sklearn.neighbors.NearestNeighbors(*, n_neighbors5, radius1.0, algorithmauto, leaf_size30, metricminkowski, p2, metric_paramsNone, n_jobsNone)邻居搜索算法的选择通过关键字 algorithm 控制,它必须是 [auto, ball_tree, kd_tree, brute] …...
V-for中 key 值的作用,如何选择key
Vue.js 中的 v-for 指令是一个强大的工具,可以用于循环渲染列表数据。在使用 v-for 指令时,我们经常需要为每个循环项指定一个 key 值。本文将深入探讨 key 值的作用,并为您提供如何选择 key 值的建议和指导。 开始 在开始之前,让…...
linux内核驱动开发
系列文章目录 主要介绍linux系统下的驱动开发 文章目录 系列文章目录 文章目录 前言 一、驱动是什么? 二、主要分类 2.读入数据 3.代码示例 总结 前言 对设备驱动最通俗的解释就是“驱使硬件设备行动”。驱动与底层硬件直接打交道,按照硬件设备的具体工作方式,读写…...

2.3.5 交换机的VRRP技术
实验2.3.5 交换机的VRRP技术 一、任务描述二、任务分析三、具体要求四、实验拓扑五、任务实施1.交换机的基本配置 六、任务验收七、任务小结 一、任务描述 某公司的网络核心层原来采用一台三层交换机,随着网络应用的日益增多,对网络的可靠性也提出了越来…...

Knowledge Graph Reasoning with Relational Digraph
摘要: 知识图推理的目的是从已有的事实中推断出新的事实。基于关系路径的推理方法具有较强的可解释性和可转移性。然而,路径在捕获图中的局部证据方面自然受到限制。在本文中,我们引入了一种新的关系结构,即关系有向图(r-digraph)࿰…...

力扣203:移除链表元素
力扣203:移除链表元素 题目描述: 给你一个链表的头节点 head 和一个整数 val ,请你删除链表中所有满足 Node.val val 的节点,并返回 新的头节点 。 示例 1: 输入:head [1,2,6,3,4,5,6], val 6 输出&a…...

Moto edge s pro手机 WIFI和蓝牙连接不上 解决方法分享
2021年12月入手一台Moto Edge S Pro 12256版,看着性价比很高,越用越垃圾。屏幕显示没有vivo亮丽/APP图标很丑/屏幕上一点点水就失灵/拍照片边缘是模糊的/系统几乎不更新。 以上都可以忍受,但是: 用一年不到,蓝牙不能…...

两万字图文详解!InnoDB锁专题!
前言 本文将跟大家聊聊 InnoDB 的锁。本文比较长,包括一条 SQL 是如何加锁的,一些加锁规则、如何分析和解决死锁问题等内容,建议耐心读完,肯定对大家有帮助的。 为什么需要加锁呢? InnoDB 的七种锁介绍 一条 SQL 是…...

2023湖南省赛
连接 目录 A:开开心心233 B:Square Game C:室温超导 F:necklace I:hard math J:radius K:tourist 补题中,会给出大部分代码 A:开开心心233 签到题 ,无论二分还是解方程还是直接for循环枚举都能直接通过啦 signed main() {ios_base:…...
AISchedule(3):基础生成表格
<!DOCTYPE html> <html> <head><meta charset"utf-8"><title>事件列表</title><!-- 加载样式表 --><style>/* 基础样式 */body {background: linear-gradient(to bottom, #f2f2f2, #e0e0e0);font-family: Helvetica…...

OpenAI 上线新功能力捧 RAG,开发者真的不需要向量数据库了?
近期, OpenAI 的开发者大会迅速成为各大媒体及开发者的热议焦点,有人甚至发出疑问“向量数据库是不是失宠了?” 这并非空穴来风。的确,OpenAI 在现场频频放出大招,宣布推出 GPT-4 Turbo 模型、全新 Assistants API 和一…...

PyCharm鼠标控制字体缩放
File->Settings->Keymap 右边搜索栏输入increase(放大),可以看到下面出现increase Font Size(放大字体尺寸),双击。 双击后出现几个选项,选择Add Mouse Shortcut,会出现一个页面给录入动作。 按住Ctrl同时鼠标向上滚动,该动…...

NI USRP RIO软件无线电
NI USRP RIO软件无线电 NI USRP RIO是SDR游戏规则的改变者,它为无线通信设计人员提供了经济实惠的SDR和前所不高的性能,可帮助开发下一代5G无线通信系统。“USRP RIO”是一个术语,用于描述包含FPGA的USRP软件定义无线电设备,例如…...
kicad源代码研究:symbol properties窗口中为SCH_SYMBOL添加或删除一个sch_field
向grid中添加一个sch_field FIELDS_GRID_TABLE<SCH_FIELD>* m_fields; WX_GRID* m_fieldsGrid; simEnableFieldRow (int) m_fields->size(); m_fields->emplace_back( VECTOR2I( 0, 0 ), simEnableFieldRow, m_symbol, SIM_ENABLE_FIELD ); // notify the grid w…...
httpClient超时时间详解与测试案例
使用httpclient作为http请求的客户端时,我们一般都会设置超时时间,这样就可以避免因为接口长时间无响应或者建立连接耗时比较久导致自己的系统崩溃。通常它里面设置的几个超时时间如下: RequestConfig config RequestConfig.custom().setCo…...

后端接口性能优化分析-数据库优化
👏作者简介:大家好,我是爱吃芝士的土豆倪,24届校招生Java选手,很高兴认识大家📕系列专栏:Spring源码、JUC源码🔥如果感觉博主的文章还不错的话,请👍三连支持&…...
都很忙,哪里寻找时间?
最近忙不? 多久未联系的朋友发来信息。 我感觉就是一坑。 说忙吧,显得自己很重要,可说不忙吧,又显得没价值。 有事说事,不要上来就说“在不?忙不?有时间不?空不?”等…...

【经验记录】Ubuntu系统安装xxxxx.tar.gz报错ImportError: No module named setuptools
最近在Anaconda环境下需要离线状态(不能联网的情况)下安装一个xxxxx.tar.gz格式的包,将对应格式的包解压后,按照如下命令进行安装 sudo python setup.py build # 编译 sudo python setup.py install # 安装总是报错如下信息&am…...
SDL2 消息循环和事件响应
1.简介 SDL事件可以是用户输入、系统通知或窗口管理事件等。SDL事件可以通过SDL_PollEvent和SDL_WaitEvent函数来获取。在SDL中,事件是通过SDL_Event结构体表示的,其中包含事件类型以及与该类型相关的具体数据。 下面是一些常见的SDL事件类型和相关的事…...

技巧篇:Mac 环境PyCharm 配置 python Anaconda
Mac 中 PyCharm 配置 python Anaconda环境 在 python 开发中我们最常用的IDE就是PyCharm,有关PyCharm的优点这里就不在赘述。在项目开发中我们经常用到许多第三方库,用的最多的命令就是pip install 第三方库名 进行安装。现在你可以使用一个工具来帮你解…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...

接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...

stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...

STM32标准库-DMA直接存储器存取
文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...

什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...

微信小程序 - 手机震动
一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注:文档 https://developers.weixin.qq…...

跨链模式:多链互操作架构与性能扩展方案
跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层…...