当前位置: 首页 > news >正文

【深度学习 | 核心概念】那些深度学习路上必经的核心概念,确定不来看看? (六)

在这里插入图片描述

🤵‍♂️ 个人主页: @AI_magician
📡主页地址: 作者简介:CSDN内容合伙人,全栈领域优质创作者。
👨‍💻景愿:旨在于能和更多的热爱计算机的伙伴一起成长!!🐱‍🏍
🙋‍♂️声明:本人目前大学就读于大二,研究兴趣方向人工智能&硬件(虽然硬件还没开始玩,但一直很感兴趣!希望大佬带带)

在这里插入图片描述

【深度学习 | 核心概念】那些深度学习路上必经的核心概念,确定不来看看? (一)
作者: 计算机魔术师
版本: 1.0 ( 2023.8.27 )

摘要: 本系列旨在普及那些深度学习路上必经的核心概念,文章内容都是博主用心学习收集所写,欢迎大家三联支持!本系列会一直更新,核心概念系列会一直更新!欢迎大家订阅

该文章收录专栏
[✨— 《深入解析机器学习:从原理到应用的全面指南》 —✨]

@toc

置信区域概念

置信区域(Confidence Interval)是统计学中的一个概念,用于估计总体参数的取值范围。它是对样本统计量的点估计结果进行区间估计的一种方法。

在统计推断中,我们通常只能通过抽样得到一部分数据,然后利用这部分数据对总体参数进行估计。然而,由于抽样误差等因素的存在,样本估计值往往不会完全等于总体参数的真实值。因此,为了提供关于总体参数的估计范围,我们使用置信区域来表示参数可能的取值范围

置信区域由估计值的下限和上限组成,表示我们对总体参数的估计具有一定的置信水平(confidence level)。常见的置信水平包括95%、90%等。例如,一个95%的置信区域表示,在大量重复抽样的情况下,有95%的置信区间会包含总体参数的真实值。

置信区域的计算通常依赖于抽样分布的性质和统计理论。常见的计算方法包括基于正态分布的方法、基于t分布的方法等。计算得到的置信区域可以帮助我们对估计结果的可靠性进行评估,并提供了关于总体参数的不确定性信息。

需要注意的是,置信区域并不直接提供关于总体参数真实值的准确区间,而是提供了一个统计上的估计范围。置信区域的宽度与置信水平有关,较宽的置信区域表示对估计结果的不确定性较大,较窄的置信区域表示对估计结果的不确定性较小。

独立同分布概念

独立同分布(independent and identically distributed,简称i.i.d.)是概率统计学中的一个重要概念。

独立(independent)指的是随机变量之间的关系,即一个随机变量的取值不受其他随机变量的取值影响。换句话说,给定一个随机变量的取值,不能提供有关其他随机变量取值的任何信息。例如,抛一枚硬币两次,第一次出现正面和第二次出现正面这两个事件是独立的,因为第一次出现正面的结果不会影响第二次出现正面的概率。

同分布(identically distributed)指的是多个随机变量具有相同的概率分布。换句话说,多个随机变量的取值遵循相同的概率规律。例如,从同一批产品中随机选取多个产品的重量,这些随机变量的取值遵循相同的概率分布。

因此,独立同分布(i.i.d.)的含义是指多个随机变量之间相互独立且具有相同的概率分布。在统计学和机器学习中,独立同分布假设常常被用来简化问题和建立模型。它是许多概率模型和统计推断方法的基础假设之一,使得问题可以更容易地建模和求解。

P-value假设检验

在统计学中,p-value中的"P"代表"probability",即概率。p-value表示观察到的样本数据或更极端情况出现的概率。

在假设检验中,p-value是用于衡量观察到的样本数据对于原假设的支持程度的指标。它表示在原假设为真的情况下,观察到的样本数据或更极端情况出现的概率。

假设检验的一般步骤如下:

  1. 建立原假设(H0)和备择假设(H1)。
  2. 选择适当的统计量,根据样本数据计算统计量的观察值。
  3. 基于原假设,确定统计量在原假设下的分布。
  4. 计算p-value,即在原假设为真的情况下,观察到的统计量值或更极端情况出现的概率。
  5. 根据p-value与事先设定的显著性水平进行比较。
    • 如果p-value小于显著性水平(通常为0.05),则拒绝原假设,认为观察到的数据提供了足够的证据支持备择假设。
    • 如果p-value大于等于显著性水平,则无法拒绝原假设,认为观察到的数据不足以提供足够的证据支持备择假设。

p-value的计算方法与具体的假设检验方法和统计量有关。对于一些常见的假设检验方法,例如t检验和F检验,p-value可以通过查表或使用概率分布函数来计算。对于更复杂的假设检验方法,可能需要使用模拟方法(如蒙特卡洛模拟)或基于抽样分布的方法来估计p-value。

需要注意的是,p-value并不提供关于备择假设的真实性或效应大小的信息。它仅仅是一种衡量观察到数据与原假设的一致性的指标。因此,在解释p-value时,应该谨慎考虑其他因素,如实际背景知识、样本大小和效应大小等。

显著性水平(0.05)

显著性水平通常被设定为0.05(或5%)的原因是出于统计学上的传统和惯例。在假设检验中,显著性水平表示在原假设为真的情况下,我们拒绝原假设的错误概率。换句话说,它是我们犯第一类错误(拒绝一个实际上为真的假设)的概率。

将显著性水平设置为0.05有以下几个原因:

  1. 常用的标准:0.05的显著性水平是在许多学科和领域中被广泛接受的标准,包括经济学、社会科学、医学研究等。这种一致性有助于结果的可比性和解释的一致性。

  2. 平衡类型I和类型II错误:在假设检验中,存在两种类型的错误,即类型I错误(拒绝一个实际上为真的假设)和类型II错误(接受一个实际上为假的假设)。将显著性水平设置为0.05可以在一定程度上平衡这两种错误的风险。

  3. 统计学的权衡:选择显著性水平时需要进行统计学权衡。较低的显著性水平(例如0.01)可以降低犯类型I错误的概率,但可能增加类型II错误的概率。相反,较高的显著性水平(例如0.10)可以增加类型I错误的概率,但可能降低类型II错误的概率。0.05的显著性水平在权衡这两种错误之间提供了一种较为平衡的选择。

需要注意的是,显著性水平的选择并不是绝对的,而是依赖于具体的研究领域、问题的重要性以及研究者自身的偏好。在某些情况下,可能会选择更为保守或更为宽松的显著性水平。

将显著性水平设置为0.05是出于统计学的传统和平衡类型I和类型II错误的考虑。然而,根据具体的研究需求和背景,研究者可以根据自己的判断和需要选择不同的显著性水平。
在这里插入图片描述

						  🤞到这里,如果还有什么疑问🤞🎩欢迎私信博主问题哦,博主会尽自己能力为你解答疑惑的!🎩🥳如果对你有帮助,你的赞是对博主最大的支持!!🥳

相关文章:

【深度学习 | 核心概念】那些深度学习路上必经的核心概念,确定不来看看? (六)

🤵‍♂️ 个人主页: AI_magician 📡主页地址: 作者简介:CSDN内容合伙人,全栈领域优质创作者。 👨‍💻景愿:旨在于能和更多的热爱计算机的伙伴一起成长!!&…...

景联文科技:驾驭数据浪潮,赋能AI产业——全球领先的数据标注解决方案供应商

根据IDC相关数据统计,全球数据量正在经历爆炸式增长,预计将从2016年的16.1ZB猛增至2025年的163ZB,其中大部分是非结构化数据,被直接利用,必须通过数据标注转化为AI可识别的格式,才能最大限度地发挥其应用价…...

OpenCV+特征检测

检测 函数cv.cornerHarris()。其参数为: img 输入图像,应为灰度和float32类型blockSize是拐角检测考虑的邻域大小ksize 使用的Sobel导数的光圈参数k 等式中的哈里斯检测器自由参数 import numpy as np import cv2 as cv filename chessboard.png img…...

Excel-lookup函数核对两个表格的数据匹配

需求描述:把右侧表格里的成绩按照姓名匹配到左表中 D11函数为LOOKUP(1,0/($H$11:$H$26A11),I$11:I$26) 然后下拉赋值公式,那么得到的值就都是对应的...

Vue 简单的语法

1.插值表达式 1.插值表达式的作用是什么? 利用表达式进行插值,将数据渲染到页面中; 2.语法结构? {{表达式}} 3.插值表达式的注意点是什么? (1)使用的数据要存在,在data中&…...

华为ensp:vrrp双机热备负载均衡

现在接口ip都已经配置完了,直接去配置vrrp r1上192.168.1.100 作为主 192.168.2.100作为副 r2上192.168.1.199 作为副 192.168.2.100作为主 这样就实现了负载均衡,如果两个都正常运行时,r1作为1.1的网关,r2作为2.1网关…...

postswigger 靶场(CSRF)攻略-- 1.没有防御措施的 CSRF 漏洞

靶场地址: What is CSRF (Cross-site request forgery)? Tutorial & Examples | Web Security Academy (portswigger.net)https://portswigger.net/web-security/csrf 没有防御措施的 CSRF 漏洞 题目中已告知易受攻击的是电子邮件的更改功能,而目…...

Langchain知识点(下)

原文:Langchain知识点(下) - 知乎 代码汇总到: https://github.com/liangwq/Chatglm_lora_multi-gpu/tree/main/APP_example/langchain_keypoint​github.com/liangwq/Chatglm_lora_multi-gpu/tree/main/APP_example/langchain_…...

百度飞浆环境安装

前言: 在安装飞浆环境之前得先把pytorch环境安装好,不过关于pytorch网上教程最多的都是通过Anaconda来安装,但是Anaconda环境安装容易遇到安装超时导致安装失败的问题,本文将叫你如何通过pip安装的方式快速安装,其实这…...

云效流水线docker部署 :node.js镜像部署VUE项目

文章目录 引言I 流水线配置1.1 项目dockerfile1.2 Node.js 镜像构建1.3 docker 部署预备知识引言 云效流水线配置实现docker 部署微服务项目:https://blog.csdn.net/z929118967/article/details/133687120?spm=1001.2014.3001.5501 配置dockerfile-> 镜像构建->docke…...

软件工程理论与实践 (吕云翔) 第五章 面向对象方法与UML课后习题及其答案解析

第五章 面向对象方法与UML 面向对象方法与UML 1.判断题 (1)UML是一种建模语言,是一种标准的表示,是一种方法。( √ ) (2)类图用来表示系统中的类和类与类之间的关系,它是对系统动态结构的描述…...

三层架构java _web

...

微信小程序项目——基本目录构成

基本构成 pages 用来存放所有小程序的页面;utils 用来存放工具性质的模块(比如:格式化时间的自定义模块);app.js 小程序项目的入口文件;app.json小程序项目的全局配置文件;app.wxss 小程序项目…...

python 基础语法 (常常容易漏掉)

同一行显示多条语句 python语法中要求缩进,但是同一行可以显示多条语句 在 Python 中,可以使用分号 (;) 将多个语句放在同一行上。这样可以在一行代码中执行多个语句,但需要注意代码的可读性和维护性。 x 5; y 10; z x y; print(z) 在…...

servlet 的XML Schema从哪边获取

servlet 6.0的规范定义: https://jakarta.ee/specifications/servlet/6.0/ 其中包含的三个XML Schema:web-app_6_0.xsd、web-common_6_0.xsd、web-fragment_6_0.xsd。但这个页面没有给出下载的链接地址。 正好我本机有Tomcat 10.1.15版本的源码&#…...

CPU vs GPU:谁更适合进行图像处理?

CPU 和 GPU 到底谁更适合进行图像处理呢?相信很多人在日常生活中都会接触到图像处理,比如修图、视频编辑等。那么,让我们一起来看看,在这方面,CPU 和 GPU 到底有什么不同,哪个更胜一筹呢? 一、C…...

基于flask+bootstrap4实现的注重创作的轻博客系统项目源码

一个注重创作的轻博客系统 作为一名技术人员一定要有自己的博客,用来记录平时技术上遇到的问题,把技术分享出去就像滚雪球一样会越來越大,于是我在何三博客的基础上开发了[l4blog],一个使用python开发的轻量博客系统,…...

手把手教你实现贪吃蛇

> 作者简介:დ旧言~,目前大二,现在学习Java,c,c,Python等 > 座右铭:松树千年终是朽,槿花一日自为荣。 > 目标:实现贪吃蛇 > 毒鸡汤:时间并不可真…...

存储服务器和普通服务器有哪些区别

存储服务器和普通服务器有哪些区别 典型的服务器会被配置来执行多种功能,如它可以作为文件服务器、打印服务器、应用数据库服务器、Web服务器,甚至可以是集以上多种功能于一身。这样,它就必须有快速的处理器芯片、比较多的RAM以及足够的内部…...

python数据处理作业4:使用numpy数组对象,随机创建4*4的矩阵,并提取其对角元素

每日小语 真理诚然是一个崇高的字眼,然而更是一桩崇高的业绩。如果人的心灵与情感依然健康,则其心潮必将为之激荡不已。——黑格尔 难点:如何创建?取对角元素的函数是什么? gpt代码学习 import numpy as np# 随机创…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言:多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

day52 ResNet18 CBAM

在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象:mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时,可能是因为以下几个原因:1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...

Element Plus 表单(el-form)中关于正整数输入的校验规则

目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入&#xff08;联动&#xff09;2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中&#xff0c;我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道&#xff0c;它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...