当前位置: 首页 > news >正文

基于乌鸦算法优化概率神经网络PNN的分类预测 - 附代码

基于乌鸦算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于乌鸦算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于乌鸦优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用乌鸦算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于乌鸦优化的PNN网络

乌鸦算法原理请参考:https://blog.csdn.net/u011835903/article/details/108800505

利用乌鸦算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

乌鸦参数设置如下:

%% 乌鸦参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,乌鸦-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

相关文章:

基于乌鸦算法优化概率神经网络PNN的分类预测 - 附代码

基于乌鸦算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于乌鸦算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于乌鸦优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神经网络的光滑…...

Jenkins中强制停止停不下来的job

# Script console 执行脚本 Jenkins 的提供了 script console 的功能,允许你写一些脚本,来调度 Jenkins 执行一些任务。 我们就可以利用 script console 来强制停止 job 执行。 首先进入 Jenkins 的 script console 页面: script console 路…...

北邮22级信通院数电:Verilog-FPGA(9)第九周实验(1)实现带同步复位功能、采用上升沿触发的D触发器

北邮22信通一枚~ 跟随课程进度更新北邮信通院数字系统设计的笔记、代码和文章 持续关注作者 迎接数电实验学习~ 获取更多文章,请访问专栏: 北邮22级信通院数电实验_青山如墨雨如画的博客-CSDN博客 目录 一.顶层模块的书写 二.两种验证方法 2.1使用…...

go中的rune类型

go语言中 ,rune其实是一种int32的数据类型的别名。 // rune is an alias for int32 and is equivalent to int32 in all ways. It is // used, by convention, to distinguish character values from integer values. type rune int32rune通常用于处理字符串中的单…...

C51--PC通过串口(中断)点亮LED

B4中的:REN允许 / 禁止串行接收控制位 REN 1为允许串行接收状态。 接收数据必须开启。所以SCON:0101 0000 ;即0x50 如何知道数据已经接收 RI位:当收到数据后 RI 1(由硬件置一) 硬件置一后必须用软件…...

使用pixy计算群体遗传学统计量

1 数据过滤 过滤参数:过滤掉次等位基因频率(minor allele frequency,MAF)低于0.05、哈达-温伯格平衡(Hardy– Weinberg equilibrium,HWE)对应的P值低于1e-10或杂合率(heterozygosit…...

第十九章总结:Java绘图

19.1:Java绘图类 19.2:绘制图形 package nineteentn; import java.awt.*; import javax.swing.*; public class DrawCircle extends JFrame { private final int OVAL_WIDTH 80; // 圆形的宽 private final int OVAL_HEIGHT 80; // 圆形的高…...

Mybatis-Plus条件构造器QueryWrapper

Mybatis-Plus条件构造器QueryWrapper 1、条件构造器关系介绍 介绍 : 上图绿色框为抽象类 蓝色框为正常类,可创建对象 黄色箭头指向为父子类关系,箭头指向为父类 wapper介绍 : Wrapper : 条件构造抽象类&#xff0…...

python解析wirshark抓包数据

因为工作需要,需要分析wirshark的抓包数据。数据有的是在比特位中。不方便查找。而lua语言又不愿意去学,所以用python解析后,输出日志。帮助分析.1.tcp分析 from dpkt.tcp import TCP from scapy.all import * from datetime import datetim…...

一个用于操作Excel文件的.NET开源库

推荐一个高性能、跨平台的操作Excel文件的.NET开源库。 01 项目简介 ClosedXML是一个.NET第三方开源库,支持读取、操作和写入Excel 2007 (.xlsx, .xlsm)文件,是基于OpenXML封装的,让开发人员无需了解OpenXML API底层API&#xf…...

Web APIs——正则表达式使用

1、什么是正则表达式 正则表达式(Regular Expression)是用于匹配字符串中字符组合的模式。在JavaScript中,正则表达式也是对象 通常用来查找、替换那些符合正则表达式的文本,许多语言都支持正则表达式 1.1 正则表达式使用场景 例如…...

文件包含学习笔记总结

文件包含概述 ​ 程序开发人员通常会把可重复使用函数或语句写到单个文件中,形成“封装”。在使用某个功能的时候,直接调用此文件,无需再次编写,提高代码重用性,减少代码量。这种调用文件的过程通常称为包含。 ​ 程…...

<C++> 优先级队列

目录 前言 一、priority_queue的使用 1. 成员函数 2. 例题 二、仿函数 三、模拟实现 1. 迭代器区间构造函数 && AdjustDown 2. pop 3. push && AdjustUp 4. top 5. size 6. empty 四、完整实现 总结 前言 优先级队列以及前面的双端队列基本上已经脱离了队列定…...

systemverilog:interface中的modport用法

使用modport可以将interface中的信号分组并指定方向,方向是从modport连接的模块看过来的。简单示例如下: interface cnt_if (input bit clk);logic rstn;logic load_en;logic [3:0] load;logic [7:0] count;modport TEST (input clk, count,output rst…...

VR建筑仿真场景编辑软件有助于激发创作者的灵感和创造力

随着VR虚拟现实技术的不断发展和普及,VR虚拟场景编辑器逐渐成为了VR场景开发重要工具。它对于丰富和完善VR虚拟现实内容的创建和呈现具有重要的意义,为我们的工作和教学带来了许多变化和可能性。 首先,VR虚拟场景编辑器对于提升用户体验具有重…...

8.查询数据

一、单表查询 MySQL从数据表中查询数据的基本语为SELECT语。SELECT语的基本格式是: SELECT {* | <字段列名>} [ FROM <表 1>, <表 2>… [WHERE <表达式> [GROUP BY <group by definition> [HAVING <expression> [{<operator>…...

VB.NET—Bug调试(参数话查询、附近语法错误)

目录 前言: BUG是什么&#xff01; 事情的经过: 过程: 错误一: 错误二: 总结: 前言: BUG是什么&#xff01; 在计算机科学中&#xff0c;BUG是指程序中的错误或缺陷&#xff0c;它通过是值代码中的错误、逻辑错误、语法错误、运行时错误等相关问题&#xff0c;这些问题…...

武汉凯迪正大—锂电池均衡维护仪

产品概况 KDZD885C 电池容量平衡测试系统&#xff0c;主要用于锂电池箱充放电测试及均衡维护&#xff0c;解决锂电池包单芯电压不均衡的痛点&#xff0c;用于快速解决锂电池电压不一致的难题,适用于各锂电池模组电压等级&#xff0c;集单芯放电&#xff0c;充电&#xff0c;均…...

解决服务器中的mysql连接不上Navicat的问题脚本

shell标本&#xff0c;快速解决服务器中的mysql连接不上Navicat的问题 在Linux服务器开发中&#xff0c;mysql的配置文件一般是只允许本地连接 所以想用Navicat进行连接&#xff0c;就需要修改配置和mysql中用户访问表的权限 为了方便&#xff0c;写成了shell脚本 #!/bin/bas…...

Git Flow的简单使用

目录 系列文章目录 一、新建feture下的分支 二、合并分支且删除当前分支 注意&#xff1a;这两个命令都得是在develop分支下进行 一、新建feture下的分支 xxx为自己命名的分支 git flow feature start xxx 二、合并分支且删除当前分支 需要先提交一下当前分支的代码&…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始&#xff0c;我们会探讨数据链路层的差错控制功能&#xff0c;差错控制功能的主要目标是要发现并且解决一个帧内部的位错误&#xff0c;我们需要使用特殊的编码技术去发现帧内部的位错误&#xff0c;当我们发现位错误之后&#xff0c;通常来说有两种解决方案。第一…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

Rust 异步编程

Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中&#xff0c;我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道&#xff0c;它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述&#xff1a;海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而&#xff0c;目前该领域仍面临一个挑战&#xff0c;即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...