当前位置: 首页 > news >正文

Django之模型层

【1】常见的13中查询方法

       例子语法:models.Userinfo.objects.filter().all()

查询方法解释
all()查询所有数据
first()那queryset中第一条数据
last()那最后一条数据
filter()带有过滤条件的查询,查询不到结果返回None
get()带有guolv条件的查询,查询不到结果报错
values()指定查询的字段,返回的是列表套字典
value_list()指定查询的字段,返回的是列表套元组
distinct()去重
order_by()排序,默认是升序,降序在条件前面加 "-"
count()统计有多少条数据
reverse()反转,前提是要先排序
exclude()排除、
exists()判断某个字段存不存在

【2】基于下划线的查询

                例子语法:models.Userinfo.objects.filter(age__gt=3)

方法解释
__gt大于
__lt小于
__gte大于等于
__lte小于等于
__in是,例如(年龄是11)
__range范围,例如(年龄在18到40岁之间的  首尾都要)
__contains模糊查询,例如(查询出名字里面含有s的数据  ),区分大小写
__icontains模糊查询,例如(查询出名字里面含有s的数据  ),不区分大小写
__startswith判断是否以某个字母开头,例如(用户名以s开头的)
__endswith判断是否以某个字母结尾,例如(用户名以s结尾的)
__year,__month等时间

【3】一对多外键的增删改查

以Book表为例

【3.1】增:create()
  •  models.Book.objects.create(title = ' 西游记 ',price = ' 100 ' publish_id = 1)
    • title:书名、price:价格、publish_id:外键字段
【3.2】删:delete()
  •  models.Book.objects.filter(id=1).delete()
    • id:id字段
    • 删除id=1的字段
【3.3】修改:update()
  • models.Book.objects.filter(id=1).update(public_id=2)
    • 将id=1的那条记录的外键id的值改成2

【4】多对多外键的增删改查

以书籍表和作者表为例

        【4.1】增:add

第一步:先查

        book_obj = models.Book.objects.filter(id=1).first()

        print(book_obj.authors)        # 到达第三张表

第二步:增加

        book_obj.authors.add(1)      # 书籍id为1的书籍绑定一个主键为1 的作者

 

括号内可以传数字也可以是对象,并且都支持多个

        【4.2】删:remove

第一步:先查

        book_obj = models.Book.objects.filter(id=1).first()

        print(book_obj.authors)        # 到达第三张表

第二步:删除

        book_obj.authors.remove(1)      # 删除外键id=1的全部作者

 

括号内可以传数字也可以是对象,并且都支持多个

        【4.3】修改:set

第一步:先查

        book_obj = models.Book.objects.filter(id=1).first()

        print(book_obj.authors)        # 到达第三张表

第二步:增加

        book_obj.authors.set([2])      # 书籍id为1的书的原作者改为外键为2的作者

 

        set():括号内必须填一个可迭代对象,该对象既可以是数字也可以是对象,并且都支持多个

【5】正反向的概念(用于多表查询)

正向:拥有外键字段的表去查别的表。---------正向查询按外键字段查询

 

反向:没有外键字段的表去查有外键字段的表。

        

        反向查询按表名小写查询。如果表名小写查不到就加_set。例如:book_set

【6】多表查询

        【6.1】子查询(基于对象的跨表查询)

  • 子查询步骤
    • 1、先判断数据的表关系
    • 2、判断数据的正反向关系
    • 3、写方法

正向例题:

        

查询书籍主键为1的出版社book_obj = models.Book.objects.filter(pk=1).first()# 书查出版社 正向res = book_obj.publishprint(res)print(res.name)print(res.addr)

 基于对象在正向什么时候加 .all()问题:

        当查询的结果有多个的时候需要加 .all()


反向例题:

        

查询出版社是东方出版社出版的书publish_obj = models.Publish.objects.filter(name='东方出版社').first()# 出版社查书  反向res = publish_obj.book_set  # app01.Book.Noneres = publish_obj.book_set.all()print(res)

基于对象在反向什么时候需要加_set.all()

        在反向查询的时候,当查询的结果有多个,就需要加_set.all()

        【6.2】联表查询(基于双下划线的跨表查询)

  • 联表查询步骤
    • 1、先判断数据的表关系
    • 2、判断数据的正反向关系
    • 3、写方法

例题的正向查询和反向查询的方法

        

1.查询jason的手机号和作者姓名# 正向
res = models.Author.objects.filter(name='jason').values('author_detail__phone','name')print(res)# 反向
res = models.AuthorDetail.objects.filter(author__name='jason').values('phone','author__name')print(res)

        【6.3】聚合查询:aggregate

集合查询一般配合分组一起使用

 

聚合查询需要导入from.db.models import Max,Min,Avg,Sum,Count

 

使用方法:

        

例子# 1 所有书的平均价格res = models.Book.objects.aggregate(Avg('price'))print(res)# 2.上述方法一次性使用res = models.Book.objects.aggregate(Max('price'),Min('price'),Sum('price'),Count('pk'),Avg('price'))print(res)

        【6.4】分组查询:annotate

分组查询特点:

        分组之后只能获得分组的依据,其它的字段不能获取。

       

        这是因为设置了严格模式:ONLY_FULL_GROUP_BY

        只需要将严格模式的指令去除就行了

        例题

 from django.db.models import Max, Min, Sum, Count, Avg# 1.统计每一本书的作者个数res = models.Book.objects.annotate(author_num=Count('authors')).values('title','author_num')'''
models点后面的表名,是以Book表分组我们还可以给起别名author_num就是给Count('authors')起别名'''

分组查询按照指定字段分组:

        models.Book.object.values('price').annotate()

 

如果出现分组查询报错的情况,解决方式:修改严格模式

【7】F和Q查询

        【7.1】F查询

F查询作用:能够帮助我们直接获取到表中某个字段对应的数据

 

F查询需要导入:from django.db.models import F

 

F查询实例1:

        

# 1.查询卖出数大于库存数的书籍from django.db.models import Fres = models.Book.objects.filter(maichu__gt=F('kucun'))print(res)

F查询实例2:

        

# 3.将所有书的名称后面加上爆款两个字"""在操作字符类型的数据的时候 F不能够直接做到字符串的拼接"""
# 需要借用Concat方法和Value方法才能实现字符串的拼接from django.db.models.functions import Concatfrom django.db.models import Valuemodels.Book.objects.update(title=Concat(F('title'), Value('爆款')))'''如果直接使用F查询,得到的结果是所有的名称都会变成空白'''# models.Book.objects.update(title=F('title') + '爆款')  # 所有的名称会全部变成空白

        【7.2】Q查询

        Q查询将 filter方法括号内默认的and关系查询变换成or关系查询或not关系查询

 

Q查询默认有3中关系:and、or、not

        1、Q包裹用 " ," 分割是 and 关系

 例子: 

        

# 1.查询卖出数大于100或者价格小于600的书籍from django.db.models import Qres = models.Book.objects.filter(Q(maichu__gt=100),Q(price__lt=600))  # Q包裹逗号分割 还是and关系

        2、Q包裹用" | "分割是 or 关系

        

# 1.查询卖出数大于100或者价格小于600的书籍from django.db.models import Qres = models.Book.objects.filter(Q(maichu__gt=100)|Q(price__lt=600))  # Q包裹"|"分割 还是and关系

        3、Q查询前面加" ~ "就是 not 关系

        

# 1.查询卖出数大于100或者价格小于600的书籍from django.db.models import Qres = models.Book.objects.filter(~Q(maichu__gt=100)|Q(price__lt=600))'''
~Q(maichu__gt=100)只是这个条件是 not关系 竖杠后面的条件不是 not关系~(Q(maichu__gt=100)|Q(price__lt=600):这个才全是not关系'''

 

Q查询的高阶用法:能够将查询条件左边也变成字符串的形式

 

语法:

        

 q = Q()q.connector = 'or'q.children.append(('maichu__gt',100))q.children.append(('price__lt',600))res = models.Book.objects.filter(q)  # 默认还是and关系print(res)

相关文章:

Django之模型层

【1】常见的13中查询方法 例子语法:models.Userinfo.objects.filter().all() 查询方法解释all()查询所有数据first()那queryset中第一条数据last()那最后一条数据filter()带有过滤条件的查询,查询不到结果返回Noneget()带有guolv条件的查询,…...

京东数据挖掘(京东运营数据分析):2023年宠物行业数据分析报告

随着社会经济的发展,人均收入水平逐渐提高,使得宠物成为越来越多家庭的成员,宠物数量不断增长。伴随养宠人群的增多,宠物相关产业的发展也不断升温,宠物经济规模持续增长。 根据鲸参谋平台的数据显示,在宠物…...

五分钟k8s实战-Istio 网关

istio-03.png 在上一期 k8s-服务网格实战-配置 Mesh 中讲解了如何配置集群内的 Mesh 请求,Istio 同样也可以处理集群外部流量,也就是我们常见的网关。 其实和之前讲到的k8s入门到实战-使用Ingress Ingress 作用类似,都是将内部服务暴露出去的…...

vue-admin-template

修改登录接口 1.f12查看请求接口 模仿返回数据写接口 修改方式1 1.在env.devolopment修改 修改方式2 vue.config.js 改成本地接口地址 配置转发 后端创建相应接口,使用map返回相同的数据 修改前端请求路径 修改前端返回状态码 utils里面的request.js...

Go fsnotify简介

fsnotify是一个用Go编写的文件系统通知库。它提供了一种观察文件系统变化的机制,例如文件的创建、修改、删除、重命名和权限修改。它使用特定平台的事件通知API,例如Linux上的inotify,macOS上的FSEvents,以及Windows上的ReadDirec…...

分类预测 | Matlab实现PSO-BiLSTM-Attention粒子群算法优化双向长短期记忆神经网络融合注意力机制多特征分类预测

分类预测 | Matlab实现PSO-BiLSTM-Attention粒子群算法优化双向长短期记忆神经网络融合注意力机制多特征分类预测 目录 分类预测 | Matlab实现PSO-BiLSTM-Attention粒子群算法优化双向长短期记忆神经网络融合注意力机制多特征分类预测分类效果基本描述程序设计参考资料 分类效果…...

【Python】Pandas(学习笔记)

一、Pandas概述 1、Pandas介绍 2008年WesMcKinney开发出的库,专门用于数据挖掘的开源python库 以Numpy为基础,借力Numpy模块在计算方面性能高的优势 基于matplotib,能够简便的画图 独特的数据结构 import pandas as pd2、Pandas优势 便…...

京联易捷科技与劳埃德私募基金管理有限公司达成合作协议签署

京联易捷科技与劳埃德私募基金管理有限公司今日宣布正式签署合作协议,双方在数字化进程、资产管理与投资以及中英金融合作方面将展开全面合作。 劳埃德(中国)私募基金管理有限公司是英国劳埃德私募基金管理有限公司的全资子公司,拥有丰富的跨境投资经验和卓越的募资能力。该集…...

Netty Review - 从BIO到NIO的进化推演

文章目录 BIODEMO 1DEMO 2小结论单线程BIO的缺陷BIO如何处理并发多线程BIO服务器的弊端 NIONIO要解决的问题模拟NIO方案一: (等待连接时和等待数据时不阻塞)方案二(缓存Socket,轮询数据是否准备好)方案二存…...

​软考-高级-系统架构设计师教程(清华第2版)【第9章 软件可靠性基础知识(P320~344)-思维导图】​

软考-高级-系统架构设计师教程(清华第2版)【第9章 软件可靠性基础知识(P320~344)-思维导图】 课本里章节里所有蓝色字体的思维导图...

M系列 Mac安装配置Homebrew

目录 首先,验证电脑是否安装了Homebrew 1、打开终端输入以下指令: 2、如图所示,该电脑没有安装Homebrew ,下面我们安装Homebrew 一、官网下载 (不建议) 1、我们打开官网:https://brew.sh/ …...

WebRTC简介及使用

文章目录 前言一、WebRTC 简介1、webrtc 是什么2、webrtc 可以做什么3、数据传输需要些什么4、SDP 协议5、STUN6、TURN7、ICE 二、WebRTC 整体框架三、WebRTC 功能模块1、视频相关①、视频采集---video_capture②、视频编解码---video_coding③、视频加密---video_engine_encry…...

网工内推 | 国企、上市公司售前,CISP/CISSP认证,最高18K*14薪

01 中电福富信息科技有限公司 招聘岗位:售前工程师(安全) 职责描述: 1、对行业、用户需求、竞争对手等方面提出分析报告,为公司市场方向、产品研发和软件开发提供建议; 2、负责项目售前跟踪、技术支持、需…...

阿里云99元VS腾讯云88元,双11云服务器价格战,谁胜谁负?

在2023年的双十一优惠活动中,阿里云推出了一系列令人惊喜的优惠活动,其中包括99元一年的超值云服务器。本文将带您了解这些优惠活动的具体内容,以及与竞争对手腾讯云的价格对比,助您轻松选择最适合的云服务器。 99元一年服务器优…...

1.jvm基本知识

目录 概述jvm虚拟机三问jvm是什么?java 和 jvm 的关系 为什么学jvm怎么学习为什么jvm调优?什么时候jvm调优调优调什么 结束 概述 相关文章在此总结如下: 文章地址jvm类加载系统地址双亲委派模型与打破双亲委派地址运行时数据区地址运行时数据区-字符串…...

前端---掌握WebAPI:DOM

文章目录 什么是DOM?使用DOM获取元素事件操作元素获取、修改元素内容获取、修改元素属性获取、修改表单元素属性:input获取、修改样式属性直接修改样式:行内样式通过修改class属性来修改样式 新增节点删除节点 什么是DOM? DOM&am…...

最优化基础(一)

最优化基础(一)1 最优化问题的数学模型 通俗地说,所谓最优化问题,就是求一个多元函数在某个给定集合上的极值. 几乎所有类型的最优化问题都可以用下面的数学模型来描述: m i n f ( x ) s . t . x ∈ Ω min\ f({x})\\ s.t. \ {…...

基于JavaWeb+SpringBoot+Vue医疗器械商城微信小程序系统的设计和实现

基于JavaWebSpringBootVue医疗器械商城微信小程序系统的设计和实现 源码获取入口前言主要技术系统设计功能截图Lun文目录订阅经典源码专栏Java项目精品实战案例《500套》 源码获取 源码获取入口 前言 摘 要 目前医疗器械行业作为医药行业的一个分支,发展十分迅速。…...

java程序中为什么经常使用tomcat

该疑问的产生场景: 原来接触的ssm项目需要在项目配置中设置tomcat,至于为什么要设置tomcat不清楚,只了解需要配置tomcat后项目才能启动。接触的springboot在项目配置中不需要配置tomcat,原因是springboot框架内置了tomcat&#xf…...

大带宽服务器需要选择哪些节点

选择大带宽服务器节点需要考虑以下几个因素: 地理位置:选择距离用户较近的节点,可以降低延迟,提高响应速度。 网络质量:大带宽服务器节点应该有良好的网络质量,稳定可靠,能够提供高速的网络传输…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲

文章目录 前言第一部分&#xff1a;体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分&#xff1a;体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)

前言&#xff1a; 在Java编程中&#xff0c;类的生命周期是指类从被加载到内存中开始&#xff0c;到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期&#xff0c;让读者对此有深刻印象。 目录 ​…...

站群服务器的应用场景都有哪些?

站群服务器主要是为了多个网站的托管和管理所设计的&#xff0c;可以通过集中管理和高效资源的分配&#xff0c;来支持多个独立的网站同时运行&#xff0c;让每一个网站都可以分配到独立的IP地址&#xff0c;避免出现IP关联的风险&#xff0c;用户还可以通过控制面板进行管理功…...

解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist

现象&#xff1a; android studio报错&#xff1a; [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决&#xff1a; 不要动CMakeLists.…...

【UE5 C++】通过文件对话框获取选择文件的路径

目录 效果 步骤 源码 效果 步骤 1. 在“xxx.Build.cs”中添加需要使用的模块 &#xff0c;这里主要使用“DesktopPlatform”模块 2. 添加后闭UE编辑器&#xff0c;右键点击 .uproject 文件&#xff0c;选择 "Generate Visual Studio project files"&#xff0c;重…...

归并排序:分治思想的高效排序

目录 基本原理 流程图解 实现方法 递归实现 非递归实现 演示过程 时间复杂度 基本原理 归并排序(Merge Sort)是一种基于分治思想的排序算法&#xff0c;由约翰冯诺伊曼在1945年提出。其核心思想包括&#xff1a; 分割(Divide)&#xff1a;将待排序数组递归地分成两个子…...