【Pytorch笔记】7.torch.nn (Convolution Layers)
我们常用torch.nn来封装网络,torch.nn为我们封装好了很多神经网络中不同的层,如卷积层、池化层、归一化层等。我们会把这些层像是串成一个牛肉串一样串起来,形成网络。
先从最简单的,都有哪些层开始学起。
Convolution Layers - 卷积层
torch.nn.Conv1d()
1维卷积层。
torch.nn.Conv1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)
in_channels:输入tensor的通道数;
out_channels:输出tensor的通道数;
kernel_size:卷积核的大小;
stride:步长;
padding:输入tensor的边界填充尺寸;
dilation:卷积核之间的间距(下面这个图为dilation=2),默认为1;

groups:从输入通道到输出通道的阻塞连接数。in_channel和out_channel需要能被groups整除。更具体地:
groups=1时所有输入均与所有输出进行卷积,groups=2时该操作相当于并排设置两个卷积层,每卷积层看到一半的输入通道,产生一半的输出通道,然后将两个卷积层连接起来。groups=in_channel时输入的每个通道都和相应的卷积核进行卷积;
bias:是否添加可学习的偏差值,True为添加,False为不添加。
padding_mode:填充模式,有以下取值:zeros(这个是默认值)、reflect、replicate、circular。
import torch
import torch.nn as nnm = nn.Conv1d(in_channels=16,out_channels=33,kernel_size=3,stride=2)
# input: 批大小为20,每个数据通道为16,size=50
input = torch.randn(20, 16, 50)
output = m(input)
print(output.size())
输出
# output: 批大小为20,每个数据通道为33,size=24
torch.Size([20, 33, 24])
torch.nn.Conv2d()
2维卷积层。
torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)
参数与Conv1d()基本一样,不再赘述。
import torch
import torch.nn as nnm = nn.Conv2d(in_channels=2,out_channels=3,kernel_size=3,stride=2)
input = torch.randn(20, 2, 5, 6)
output = m(input)
print(output.size())
输出
torch.Size([20, 3, 2, 2])
torch.nn.Conv3d()
3维卷积层。
torch.nn.Conv3d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)
参数与Conv1d()基本一样,不再赘述。
import torch
import torch.nn as nnm = nn.Conv3d(in_channels=2,out_channels=3,kernel_size=3,stride=2)
input = torch.randn(20, 2, 4, 5, 6)
output = m(input)
print(output.size())
输出
torch.Size([20, 3, 1, 2, 2])
torch.nn.ConvTranspose1d()
1维转置卷积层。
torch.nn.ConvTranspose1d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)
参数与Conv1d()基本一样,不再赘述。
唯一不同的是output_padding,与padding不同的是,output_padding是输出tensor的每一个边,外面填充的层数。
(padding是输入tensor的每个边填充的层数)
import torch
import torch.nn as nnm = nn.ConvTranspose1d(in_channels=2,out_channels=3,kernel_size=3,stride=1)
input = torch.randn(20, 2, 2)
output = m(input)
print(output.size())
输出
torch.Size([20, 3, 4])
torch.nn.ConvTranspose2d()
2维转置卷积层。
torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)
参数与Conv1d()基本一样,不再赘述。
import torch
import torch.nn as nnm = nn.ConvTranspose2d(in_channels=2,out_channels=3,kernel_size=3,stride=1)
input = torch.randn(20, 2, 2, 2)
output = m(input)
print(output.size())
输出
torch.Size([20, 3, 4, 4])
torch.nn.ConvTranspose3d()
3维转置卷积层。
torch.nn.ConvTranspose3d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)
参数与Conv1d()基本一样,不再赘述。
import torch
import torch.nn as nnm = nn.ConvTranspose3d(in_channels=2,out_channels=3,kernel_size=3,stride=1)
input = torch.randn(20, 2, 2, 2, 2)
output = m(input)
print(output.size())
输出
torch.Size([20, 3, 4, 4, 4])
torch.nn.LazyConv1d()
1维延迟初始化卷积层,当in_channel不确定时可使用这个层。
关于延迟初始化,大家可以参考这篇文章,我认为讲的很好:
俱往矣… - 延迟初始化——【torch学习笔记】
torch.nn.LazyConv1d(out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)
LazyConv1d没有in_channel参数。
这不代表这个层没有输入的通道,而是在调用时自动适配,并进行初始化。
引用文章中的一段代码,改成LazyConv1d,讲述使用方法。
import torch
import torch.nn as nnnet = nn.Sequential(nn.LazyConv1d(256, 2),nn.ReLU(),nn.Linear(9, 10)
)
print(net)
[net[i].state_dict() for i in range(len(net))]low = torch.finfo(torch.float32).min / 10
high = torch.finfo(torch.float32).max / 10
X = torch.zeros([2, 20, 10], dtype=torch.float32).uniform_(low, high)
net(X)
print(net)
输出
Sequential((0): LazyConv1d(0, 256, kernel_size=(2,), stride=(1,))(1): ReLU()(2): Linear(in_features=9, out_features=10, bias=True)
)
Sequential((0): Conv1d(20, 256, kernel_size=(2,), stride=(1,))(1): ReLU()(2): Linear(in_features=9, out_features=10, bias=True)
)
可以看出,未进行初始化时,in_features=0。只有传入参数使用网络后才会根据输入进行初始化。
torch.nn.LazyConv2d()
2维延迟初始化卷积层。
torch.nn.LazyConv2d(out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)
torch.nn.LazyConv3d()
3维延迟初始化卷积层。
torch.nn.LazyConv3d(out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)
torch.nn.LazyConvTranspose1d()
1维延迟初始化转置卷积层。
torch.nn.LazyConvTranspose1d(out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)
torch.nn.LazyConvTranspose2d()
2维延迟初始化转置卷积层。
torch.nn.LazyConvTranspose2d(out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)
torch.nn.LazyConvTranspose3d()
3维延迟初始化转置卷积层。
torch.nn.LazyConvTranspose3d(out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)
torch.nn.Unfold()
从一个批次的输入张量中提取出滑动的局部区域块。
torch.nn.Unfold(kernel_size, dilation=1, padding=0, stride=1)
kernel_size:滑动块的大小;
dilation:卷积核之间的间距(torch.nn.Conv1d中有图示);
padding:输入tensor的边界填充尺寸;
stride:滑块滑动的步长。
这里的输入必须是4维的tensor,否则会报这样的错误:
NotImplementedError: Input Error: Only 4D input Tensors are supported (got 2D)
示例
import torch
from torch import nnt = torch.tensor([[[[1., 2., 3., 4.],[5., 6., 7., 8.],[9., 10., 11., 12.],[13., 14., 15., 16.],]]])unfold = nn.Unfold(kernel_size=(2, 2), dilation=1, padding=0, stride=1)
output = unfold(t)
print(output)
输出
tensor([[[ 1., 2., 3., 5., 6., 7., 9., 10., 11.],[ 2., 3., 4., 6., 7., 8., 10., 11., 12.],[ 5., 6., 7., 9., 10., 11., 13., 14., 15.],[ 6., 7., 8., 10., 11., 12., 14., 15., 16.]]])

torch.nn.Fold()
Unfold()的逆操作。当Unfold()时出现滑块有重复覆盖时会导致结果和原来不一样。因为Fold()的过程中对于同一个位置的元素进行加法处理。
torch.nn.Fold(output_size, kernel_size, dilation=1, padding=0, stride=1)
下面是Unfold()和Fold()结合的代码,Unfold()部分和上面代码相同。
import torch
from torch import nnt = torch.tensor([[[[1., 2., 3., 4.],[5., 6., 7., 8.],[9., 10., 11., 12.],[13., 14., 15., 16.]]]])unfold = nn.Unfold(kernel_size=(2, 2), dilation=1, padding=0, stride=1)
output = unfold(t)
print(output)
fold = nn.Fold(output_size=(4, 4), kernel_size=(2, 2))
out = fold(output)
print(out)
输出
tensor([[[ 1., 2., 3., 5., 6., 7., 9., 10., 11.],[ 2., 3., 4., 6., 7., 8., 10., 11., 12.],[ 5., 6., 7., 9., 10., 11., 13., 14., 15.],[ 6., 7., 8., 10., 11., 12., 14., 15., 16.]]])
tensor([[[[ 1., 4., 6., 4.],[10., 24., 28., 16.],[18., 40., 44., 24.],[13., 28., 30., 16.]]]])
相关文章:
【Pytorch笔记】7.torch.nn (Convolution Layers)
我们常用torch.nn来封装网络,torch.nn为我们封装好了很多神经网络中不同的层,如卷积层、池化层、归一化层等。我们会把这些层像是串成一个牛肉串一样串起来,形成网络。 先从最简单的,都有哪些层开始学起。 Convolution Layers -…...
MySQL内部组件与日志详解
MySQL的内部组件结构 MySQL 可以分为 Server 层和存储引擎层两部分。 Server 层主要包括连接器、查询缓存、分析器、优化器、执行器等,涵盖 MySQL 的大多数核心服务功能,以及所有的内置函数(如日期、时间、数学和加密函数等)&am…...
【LeetCode】94. 二叉树的中序遍历
94. 二叉树的中序遍历 难度:简单 题目 给定一个二叉树的根节点 root ,返回 它的 中序 遍历 。 示例 1: 输入:root [1,null,2,3] 输出:[1,3,2]示例 2: 输入:root [] 输出:[]示…...
IP-guard WebServer 命令执行漏洞复现
简介 IP-guard是一款终端安全管理软件,旨在帮助企业保护终端设备安全、数据安全、管理网络使用和简化IT系统管理。在旧版本申请审批的文件预览功能用到了一个开源的插件 flexpaper,使用的这个插件版本存在远程命令执行漏洞,攻击者可利用该漏…...
TensorFlow案例学习:图片风格迁移
准备 官方教程: 任意风格的快速风格转换 模型下载地址: https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2 学习 加载要处理的内容图片和风格图片 # 用于将图像裁剪为方形def crop_center(image):# 图片原始形状shape image…...
解密网络世界的秘密——Wireshark Mac/Win中文版网络抓包工具
在当今数字化时代,网络已经成为了人们生活和工作中不可或缺的一部分。然而,对于网络安全和性能的监控和分析却是一项重要而又复杂的任务。为了帮助用户更好地理解和解决网络中的问题,Wireshark作为一款强大的网络抓包工具,应运而生…...
自学ansible笔记
一、认识ansible Ansible是一款开源自动化运维工具。它有如下特点: 1、不需要安装客户端,通过sshd去通信,比较轻量化; 2、基于模块工作,模块可以由任何语言开发,比较自由和开放; 3、不仅支持命…...
笔记53:torch.nn.rnn() 函数详解
参数解释: (1)input_size():即输入信息 Xt 的每个序列的独热编码向量的长度,即 len(vocab) (2)hidden_size():即隐变量 h 的维度(维度是多少,就代表用几个数…...
【Spring】使用三方包进行数据源对象(数据库)管理
在这里使用alibaba的druid来连接数据库,然后再Spring Config下配置数据库 目录 第一步:在pom.xml中导入坐标第二步:在bean中配置连接注 第一步:在pom.xml中导入坐标 在dependencies下写: <dependency><grou…...
EfficientNet:通过模型效率彻底改变深度学习
一、介绍 EfficientNet 是深度学习领域的里程碑,代表了神经网络架构方法的范式转变。EfficientNet 由 Google Research 的 Mingxing Tan 和 Quoc V. Le 开发,在不影响性能的情况下满足了对计算高效模型不断增长的需求。本文深入探讨了 EfficientNet 背后…...
asp.net core mvc之 布局
一、布局是什么? 布局是把每个页面的公共部分,提取成一个布局页面(头、导航、页脚)。 二、默认布局 _Layout.cshtml 默认的布局是在 /Views/Shared 目录的 _Layout.cshtml文件。通常Shared目录中的视图都是公共视图。该目录下的…...
【QT HTTP】使用QtNetwork模块制作基于HTTP请求的C/S架构
目录 0 引言1 HTTP基本知识1.1 请求类型1.2 HTTP请求报文格式1.3 HTTP响应报文格式1.4 拓展:GET vs POST 请求方法GET请求请求报文:响应报文 POST请求请求报文响应报文 其他注意事项示例:GET请求示例POST请求示例 2 实战2.1 QtNetwork模块介绍…...
R语言绘制精美图形 | 火山图 | 学习笔记
一边学习,一边总结,一边分享! 教程图形 前言 最近的事情较多,教程更新实在是跟不上,主要原因是自己没有太多时间来学习和整理相关的内容。一般在下半年基本都是非常忙,所有一个人的精力和时间有限&#x…...
远程创建分支本地VScode看不到分支
在代码存放处右击,点击Git Bash Here 输入git fetch–从远程仓库中获取最新的分支代码和提交历史 就OK啦,现在分支可以正常查看了...
python后台框架简介
python后台框架 Python是一种流行的编程语言,它有许多优点,如简洁、易读、灵活和功能强大。Python也是一种常用的后端开发语言,它可以用来构建各种类型的网站和应用程序。Python有许多后端框架,可以帮助开发者快速地开发和部署后…...
spring boot validation使用
spring-boot-starter-validation 是 Spring Boot 中用于支持数据验证的模块。它建立在 Java Validation API(JSR-380)之上,提供了一种方便的方式来验证应用程序中的数据。以下是使用 spring-boot-starter-validation 的基本方法: …...
Hadoop3.3.4分布式安装
安装前提:已经配置好java环境,所有机器之间ssh的免密登录。 注意:下文中的flinkv1、flinkv2、flinkv3是三台服务器的别名 1.集群部署规划 注意:NameNode和SecondaryNameNode不要安装在同一台服务器 注意:ResourceMan…...
SQL ALTER TABLE 语句||SQL AUTO INCREMENT 字段
SQL ALTER TABLE 语句 ALTER TABLE 语句 ALTER TABLE 语句用于在现有表中添加、删除或修改列。 SQL ALTER TABLE 语法 若要向表中添加列,请使用以下语法: ALTER TABLE table_name ADD column_name datatype 若要删除表中的列&am…...
【源码系列】短剧系统开发国际版短剧系统软件平台介绍
系统介绍 短剧是一种快节奏、紧凑、有趣的戏剧形式,通过短时间的精彩表演,向观众传递故事的情感和思考。它以其独特的形式和魅力,吸引着观众的关注,成为了当代戏剧娱乐中不可或缺的一部分。短剧每一集都是一个小故事,…...
JavaWeb[总结]
文章目录 一、Tomcat1. BS 与 CS 开发介绍1.1 BS 开发1.2 CS 开发 2. 浏览器访问 web 服务过程详解(面试题)2.1 回到前面的 JavaWeb 开发技术栈图2.2 浏览器访问 web 服务器文件的 UML时序图(过程) ! 二、动态 WEB 开发核心-Servlet1. 为什么会出现 Servlet2. 什么是…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...
DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...
《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习) 一、Aspose.PDF 简介二、说明(⚠️仅供学习与研究使用)三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...
腾讯云V3签名
想要接入腾讯云的Api,必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口,但总是卡在签名这一步,最后放弃选择SDK,这次终于自己代码实现。 可能腾讯云翻新了接口文档,现在阅读起来,清晰了很多&…...
Linux nano命令的基本使用
参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时,显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...
