py并发编程实践-demo
需求
已知条件:appX -请求-> api
多进程实现并发请求api
- 给定app应用列表,请求api核数
from datetime import datetime, timedelta
from multiprocessing import Processclass ProcessTest(object):"""多进程并发请求API,并批量写入django表要点:1)并发;2)读写批量原则,批量读、批量写需求:已知1000个app,通过api获取其CPU核数思路:将app列表 按并发数 分段"""def __init__(self, mon_day):self.mon_day = mon_day@staticmethoddef requests_mon_api(app_id):import randomreturn {app_id: random.randint(100, 5000)}@staticmethoddef get_app_list():import timetime.sleep(2) # 耗时return ["app_"+str(i) for i in range(1000)]def records_to_db(self, records):# django table bulk create to dbprint("[{0}] -------->>>>>>>>>{1}".format(self.mon_day, records))def app_cores_to_db(self, app_id):# api 无限重试。。flag = 0while flag == 0:try:app_records = self.requests_mon_api(app_id)self.records_to_db(app_records)flag = 1except Exception as e:print(e.args, "retry", app_id)def batch_run(self, start, end, app_arr):batch_app = app_arr[start:end + 1]for app in batch_app:self.app_cores_to_db(app)def process_run(self, process_num, process_batch, app_arr):process_arr = []# from django import dbfor i in range(process_num):# db.close_old_connections()p = Process(target=self.batch_run, args=(i * process_batch, (i+1)*process_batch, app_arr))print("第{0}个进程,拉取范围[{1}:{2}],共拉取{3}条记录".format(i+1, i*process_batch, (i+1)*process_batch, process_batch))process_arr.append(p)for p in process_arr:p.start()for p in process_arr:p.join()def to_db(self):app_arr = self.get_app_list()process_num = 15total = len(app_arr)process_batch = total // process_numself.process_run(process_num=process_num, process_batch=process_batch, app_arr=app_arr)remain_index = process_batch * process_num + 1for app_id in app_arr[remain_index:]:try:self.app_cores_to_db(app_id)except Exception as e:print(e.args, app_id, "error")if __name__ == '__main__':day = (datetime.now() + timedelta(days=-0)).strftime("%Y-%m-%d")tp = ProcessTest(mon_day=day)tp.to_db()相关文章:
py并发编程实践-demo
需求 已知条件:appX -请求-> api 多进程实现并发请求api 给定app应用列表,请求api核数 from datetime import datetime, timedelta from multiprocessing import Processclass ProcessTest(object):"""多进程并发请求APIÿ…...
1-2 暴力破解-模拟
模拟:根据题目要求编写代码 可分为:图形排版(根据某种规则输出特定图形)、日期问题、其他模拟 一.图形排版 1.输出梯形(清华大学) 法一:等差数列 分析:每行的星号个数为等差数列2n2…...
机器学习中的Bagging思想
Bagging(Bootstrap Aggregating)是机器学习中一种集成学习方法,旨在提高模型的准确性和稳定性。Bagging的思想源自于Bootstrap采样技术,其基本原理如下: Bootstrap采样: Bagging的核心思想是通过对原始数据…...
基于PyTorch搭建你的生成对抗性网络
前言 你听说过GANs吗?还是你才刚刚开始学?GANs是2014年由蒙特利尔大学的学生 Ian Goodfellow 博士首次提出的。GANs最常见的例子是生成图像。有一个网站包含了不存在的人的面孔,便是一个常见的GANs应用示例。也是我们将要在本文中进行分享的…...
ROS话题(Topic)通信:自定义msg - 例程与讲解
在 ROS 通信协议中,数据是以约定好的结构传输的,即数据类型,比如Topic使用的msg,Service使用的srv,ROS 中的 std_msgs 封装了一些原生的数据类型,比如:Bool、Char、Float32、Int64、String等&am…...
【Vue配置项】 computed计算属性 | watch侦听属性
目录 前言 computed计算属性 什么是计算属性? Vue的原有属性是什么? 得到的全新的属性是什么? 计算属性怎么用? 计算属性的作用是什么? 为什么说代码执行率高了? computed计算属性中的this指向 co…...
linux 查看命令使用说明
查看命令的使用说明的命令有三种,但并不是每个命令都可以使用这三种命令去查看某个命令的使用说明,如果一种不行就使用另外一种试一试。 1.whatis 命令 概括命令的作用 2.命令 --help 命令的使用格式和选项的作用 3.man 命令 命令的作用和选项的详细…...
ceph修复pg inconsistent( scrub errors)
异常情况 1、收到异常情况如下: OSD_SCRUB_ERRORS 12 scrub errors PG_DAMAGED Possible data damage: 1 pg inconsistentpg 6.d is activeremappedinconsistentbackfill_wait, acting [5,7,4]2、查看详细信息 登录后复制 #ceph health detail HEALTH_ERR 12 scrub errors…...
【论文精读】VOYAGER: An Open-Ended Embodied Agent with Large Language Models
Understanding LSTM Networks 前言Abstract1 Introduction2 Method2.1 Automatic Curriculum2.2 Skill Library2.3 Iterative Prompting Mechanism 3 Experiments3.1 Experimental Setup3.2 Baselines3.3 Evaluation Results3.4 Ablation Studies3.5 Multimodal Feedback from …...
Linux安装DMETL5与卸载
Linux安装DMETL5与卸载 环境介绍1 DM8数据库配置1.1 DM8数据库安装1.2 初始化达梦数据库1.3 创建DMETL使用的数据库用户 2 配置DMETL52.1 解压DMETL5安装包2.2 安装调度器2.3 安装执行器2.4 安装管理器2.5 启动dmetl5 调度器2.6 启动dmetl5 执行器2.7 启动dmetl5 管理器2.8 查看…...
Office Word 中的宏
Office Word 中的宏 简介宏的使用将自定义创建的宏放入文档标题栏中的“自定义快速访问工具栏”插入指定格式、内容的字符选中word中的指定文字查找word中的指定文字A,并替换为指定文字B插入文本框并向内插入文字word 表格中的宏操作遍历表格中的所有内容批量设置表…...
qt中d指针
在Qt中,d指针是一种常见的设计模式,也称为"PIMPL"(Private Implementation)或者"Opaque Pointer"。它主要用于隐藏类的实现细节,提供了一种封装和隔离的方式,以便在不影响公共接口的情…...
交易者最看重什么?anzo Capital这点最重要!
交易者最看重什么?有人会说技术,有人会说交易策略,有人会说盈利,但anzo Capital认为Vishal 最看重的应该是眼睛吧! 29岁的Vishal Agraval在9年前因某种原因失去了视力,然而,他的失明并未能阻…...
window 搭建 MQTT 服务器并使用
1. 下载 安装 mosquitto 下载地址: http://mosquitto.org/files/binary/ win 使用 win32 看自己电脑下载相应版本: 一直安装: 记住安装路径:C:\Program Files\mosquitto 修改配置文件: allow_anonymous false 设置…...
Prometheus+Ansible+Consul实现服务发现
一、简介 1、Consul简介 Consul 是基于 GO 语言开发的开源工具,主要面向分布式,服务化的系统提供服务注册、服务发现和配置管理的功能。Consul 提供服务注册/发现、健康检查、Key/Value存储、多数据中心和分布式一致性保证等功能。 在没有使用 consul 服…...
【原创】java+swing+mysql校园活动管理系统设计与实现
前言: 本文介绍了一个校园活动管理系统的设计与实现。该系统基于JavaSwing技术,采用C/S架构,使用Java语言开发,以MySQL作为数据库。系统实现了活动发布、活动报名、活动列表查看等功能,方便了校园活动的发布和管理&am…...
vscode中vue项目引入的组件的颜色没区分解决办法
vscode中vue项目引入的组件的颜色没区分解决办法 图中引入组件和其他标签颜色一样没有区分,让开发者不易区分,很蓝瘦 这个就很直观,解决办法就是你当前的vscode版本不对,你得去找找其他版本,我的解决办法就是去官网历…...
uniapp: 实现pdf预览功能
目录 第一章 实现效果 第二章 了解并解决需求 2.1 了解需求 2.2 解决需求 2.2.1 方法一 2.2.2 方法二 第三章 资源下载 第一章 实现效果 第二章 了解并解决需求 2.1 了解需求 前端需要利用后端传的pdf临时路径实现H5端以及app端的pdf预览首先我们别像pc端一样&#…...
【Pytorch笔记】7.torch.nn (Convolution Layers)
我们常用torch.nn来封装网络,torch.nn为我们封装好了很多神经网络中不同的层,如卷积层、池化层、归一化层等。我们会把这些层像是串成一个牛肉串一样串起来,形成网络。 先从最简单的,都有哪些层开始学起。 Convolution Layers -…...
MySQL内部组件与日志详解
MySQL的内部组件结构 MySQL 可以分为 Server 层和存储引擎层两部分。 Server 层主要包括连接器、查询缓存、分析器、优化器、执行器等,涵盖 MySQL 的大多数核心服务功能,以及所有的内置函数(如日期、时间、数学和加密函数等)&am…...
第19节 Node.js Express 框架
Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...
centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...
