当前位置: 首页 > news >正文

py并发编程实践-demo

需求

已知条件:appX -请求-> api  

多进程实现并发请求api

  • 给定app应用列表,请求api核数
from datetime import datetime, timedelta
from multiprocessing import Processclass ProcessTest(object):"""多进程并发请求API,并批量写入django表要点:1)并发;2)读写批量原则,批量读、批量写需求:已知1000个app,通过api获取其CPU核数思路:将app列表 按并发数 分段"""def __init__(self, mon_day):self.mon_day = mon_day@staticmethoddef requests_mon_api(app_id):import randomreturn {app_id: random.randint(100, 5000)}@staticmethoddef get_app_list():import timetime.sleep(2)   # 耗时return ["app_"+str(i) for i in range(1000)]def records_to_db(self, records):# django table bulk create to dbprint("[{0}] -------->>>>>>>>>{1}".format(self.mon_day, records))def app_cores_to_db(self, app_id):# api 无限重试。。flag = 0while flag == 0:try:app_records = self.requests_mon_api(app_id)self.records_to_db(app_records)flag = 1except Exception as e:print(e.args, "retry", app_id)def batch_run(self, start, end, app_arr):batch_app = app_arr[start:end + 1]for app in batch_app:self.app_cores_to_db(app)def process_run(self, process_num, process_batch, app_arr):process_arr = []# from django import dbfor i in range(process_num):# db.close_old_connections()p = Process(target=self.batch_run, args=(i * process_batch, (i+1)*process_batch, app_arr))print("第{0}个进程,拉取范围[{1}:{2}],共拉取{3}条记录".format(i+1, i*process_batch, (i+1)*process_batch, process_batch))process_arr.append(p)for p in process_arr:p.start()for p in process_arr:p.join()def to_db(self):app_arr = self.get_app_list()process_num = 15total = len(app_arr)process_batch = total // process_numself.process_run(process_num=process_num, process_batch=process_batch, app_arr=app_arr)remain_index = process_batch * process_num + 1for app_id in app_arr[remain_index:]:try:self.app_cores_to_db(app_id)except Exception as e:print(e.args, app_id, "error")if __name__ == '__main__':day = (datetime.now() + timedelta(days=-0)).strftime("%Y-%m-%d")tp = ProcessTest(mon_day=day)tp.to_db()

相关文章:

py并发编程实践-demo

需求 已知条件:appX -请求-> api 多进程实现并发请求api 给定app应用列表,请求api核数 from datetime import datetime, timedelta from multiprocessing import Processclass ProcessTest(object):"""多进程并发请求API&#xff…...

1-2 暴力破解-模拟

模拟:根据题目要求编写代码 可分为:图形排版(根据某种规则输出特定图形)、日期问题、其他模拟 一.图形排版 1.输出梯形(清华大学) 法一:等差数列 分析:每行的星号个数为等差数列2n2…...

机器学习中的Bagging思想

Bagging(Bootstrap Aggregating)是机器学习中一种集成学习方法,旨在提高模型的准确性和稳定性。Bagging的思想源自于Bootstrap采样技术,其基本原理如下: Bootstrap采样: Bagging的核心思想是通过对原始数据…...

基于PyTorch搭建你的生成对抗性网络

前言 你听说过GANs吗?还是你才刚刚开始学?GANs是2014年由蒙特利尔大学的学生 Ian Goodfellow 博士首次提出的。GANs最常见的例子是生成图像。有一个网站包含了不存在的人的面孔,便是一个常见的GANs应用示例。也是我们将要在本文中进行分享的…...

ROS话题(Topic)通信:自定义msg - 例程与讲解

在 ROS 通信协议中,数据是以约定好的结构传输的,即数据类型,比如Topic使用的msg,Service使用的srv,ROS 中的 std_msgs 封装了一些原生的数据类型,比如:Bool、Char、Float32、Int64、String等&am…...

【Vue配置项】 computed计算属性 | watch侦听属性

目录 前言 computed计算属性 什么是计算属性? Vue的原有属性是什么? 得到的全新的属性是什么? 计算属性怎么用? 计算属性的作用是什么? 为什么说代码执行率高了? computed计算属性中的this指向 co…...

linux 查看命令使用说明

查看命令的使用说明的命令有三种,但并不是每个命令都可以使用这三种命令去查看某个命令的使用说明,如果一种不行就使用另外一种试一试。 1.whatis 命令 概括命令的作用 2.命令 --help 命令的使用格式和选项的作用 3.man 命令 命令的作用和选项的详细…...

ceph修复pg inconsistent( scrub errors)

异常情况 1、收到异常情况如下: OSD_SCRUB_ERRORS 12 scrub errors PG_DAMAGED Possible data damage: 1 pg inconsistentpg 6.d is activeremappedinconsistentbackfill_wait, acting [5,7,4]2、查看详细信息 登录后复制 #ceph health detail HEALTH_ERR 12 scrub errors…...

【论文精读】VOYAGER: An Open-Ended Embodied Agent with Large Language Models

Understanding LSTM Networks 前言Abstract1 Introduction2 Method2.1 Automatic Curriculum2.2 Skill Library2.3 Iterative Prompting Mechanism 3 Experiments3.1 Experimental Setup3.2 Baselines3.3 Evaluation Results3.4 Ablation Studies3.5 Multimodal Feedback from …...

Linux安装DMETL5与卸载

Linux安装DMETL5与卸载 环境介绍1 DM8数据库配置1.1 DM8数据库安装1.2 初始化达梦数据库1.3 创建DMETL使用的数据库用户 2 配置DMETL52.1 解压DMETL5安装包2.2 安装调度器2.3 安装执行器2.4 安装管理器2.5 启动dmetl5 调度器2.6 启动dmetl5 执行器2.7 启动dmetl5 管理器2.8 查看…...

Office Word 中的宏

Office Word 中的宏 简介宏的使用将自定义创建的宏放入文档标题栏中的“自定义快速访问工具栏”插入指定格式、内容的字符选中word中的指定文字查找word中的指定文字A,并替换为指定文字B插入文本框并向内插入文字word 表格中的宏操作遍历表格中的所有内容批量设置表…...

qt中d指针

在Qt中,d指针是一种常见的设计模式,也称为"PIMPL"(Private Implementation)或者"Opaque Pointer"。它主要用于隐藏类的实现细节,提供了一种封装和隔离的方式,以便在不影响公共接口的情…...

交易者最看重什么?anzo Capital这点最重要!

交易者最看重什么?有人会说技术,有人会说交易策略,有人会说盈利,但anzo Capital认为Vishal 最看重的应该是眼睛吧! 29岁的Vishal Agraval在9年前因某种原因失去了视力,然而,他的失明并未能阻…...

window 搭建 MQTT 服务器并使用

1. 下载 安装 mosquitto 下载地址: http://mosquitto.org/files/binary/ win 使用 win32 看自己电脑下载相应版本: 一直安装: 记住安装路径:C:\Program Files\mosquitto 修改配置文件: allow_anonymous false 设置…...

Prometheus+Ansible+Consul实现服务发现

一、简介 1、Consul简介 Consul 是基于 GO 语言开发的开源工具,主要面向分布式,服务化的系统提供服务注册、服务发现和配置管理的功能。Consul 提供服务注册/发现、健康检查、Key/Value存储、多数据中心和分布式一致性保证等功能。 在没有使用 consul 服…...

【原创】java+swing+mysql校园活动管理系统设计与实现

前言: 本文介绍了一个校园活动管理系统的设计与实现。该系统基于JavaSwing技术,采用C/S架构,使用Java语言开发,以MySQL作为数据库。系统实现了活动发布、活动报名、活动列表查看等功能,方便了校园活动的发布和管理&am…...

vscode中vue项目引入的组件的颜色没区分解决办法

vscode中vue项目引入的组件的颜色没区分解决办法 图中引入组件和其他标签颜色一样没有区分,让开发者不易区分,很蓝瘦 这个就很直观,解决办法就是你当前的vscode版本不对,你得去找找其他版本,我的解决办法就是去官网历…...

uniapp: 实现pdf预览功能

目录 第一章 实现效果 第二章 了解并解决需求 2.1 了解需求 2.2 解决需求 2.2.1 方法一 2.2.2 方法二 第三章 资源下载 第一章 实现效果 第二章 了解并解决需求 2.1 了解需求 前端需要利用后端传的pdf临时路径实现H5端以及app端的pdf预览首先我们别像pc端一样&#…...

【Pytorch笔记】7.torch.nn (Convolution Layers)

我们常用torch.nn来封装网络,torch.nn为我们封装好了很多神经网络中不同的层,如卷积层、池化层、归一化层等。我们会把这些层像是串成一个牛肉串一样串起来,形成网络。 先从最简单的,都有哪些层开始学起。 Convolution Layers -…...

MySQL内部组件与日志详解

MySQL的内部组件结构 MySQL 可以分为 Server 层和存储引擎层两部分。 Server 层主要包括连接器、查询缓存、分析器、优化器、执行器等,涵盖 MySQL 的大多数核心服务功能,以及所有的内置函数(如日期、时间、数学和加密函数等)&am…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

三体问题详解

从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控,故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令:jps [options] [hostid] 功能:本地虚拟机进程显示进程ID(与ps相同),可同时显示主类&#x…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架,允许使用简单的变成模型跨计算机对大型集群进行分布式处理(1.海量的数据存储 2.海量数据的计算)Hadoop核心组件 hdfs(分布式文件存储系统)&a…...

CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝

目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为:一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...

MySQL 部分重点知识篇

一、数据库对象 1. 主键 定义 :主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 :确保数据的完整性,便于数据的查询和管理。 示例 :在学生信息表中,学号可以作为主键&#xff…...

Spring AI Chat Memory 实战指南:Local 与 JDBC 存储集成

一个面向 Java 开发者的 Sring-Ai 示例工程项目,该项目是一个 Spring AI 快速入门的样例工程项目,旨在通过一些小的案例展示 Spring AI 框架的核心功能和使用方法。 项目采用模块化设计,每个模块都专注于特定的功能领域,便于学习和…...