当前位置: 首页 > news >正文

py并发编程实践-demo

需求

已知条件:appX -请求-> api  

多进程实现并发请求api

  • 给定app应用列表,请求api核数
from datetime import datetime, timedelta
from multiprocessing import Processclass ProcessTest(object):"""多进程并发请求API,并批量写入django表要点:1)并发;2)读写批量原则,批量读、批量写需求:已知1000个app,通过api获取其CPU核数思路:将app列表 按并发数 分段"""def __init__(self, mon_day):self.mon_day = mon_day@staticmethoddef requests_mon_api(app_id):import randomreturn {app_id: random.randint(100, 5000)}@staticmethoddef get_app_list():import timetime.sleep(2)   # 耗时return ["app_"+str(i) for i in range(1000)]def records_to_db(self, records):# django table bulk create to dbprint("[{0}] -------->>>>>>>>>{1}".format(self.mon_day, records))def app_cores_to_db(self, app_id):# api 无限重试。。flag = 0while flag == 0:try:app_records = self.requests_mon_api(app_id)self.records_to_db(app_records)flag = 1except Exception as e:print(e.args, "retry", app_id)def batch_run(self, start, end, app_arr):batch_app = app_arr[start:end + 1]for app in batch_app:self.app_cores_to_db(app)def process_run(self, process_num, process_batch, app_arr):process_arr = []# from django import dbfor i in range(process_num):# db.close_old_connections()p = Process(target=self.batch_run, args=(i * process_batch, (i+1)*process_batch, app_arr))print("第{0}个进程,拉取范围[{1}:{2}],共拉取{3}条记录".format(i+1, i*process_batch, (i+1)*process_batch, process_batch))process_arr.append(p)for p in process_arr:p.start()for p in process_arr:p.join()def to_db(self):app_arr = self.get_app_list()process_num = 15total = len(app_arr)process_batch = total // process_numself.process_run(process_num=process_num, process_batch=process_batch, app_arr=app_arr)remain_index = process_batch * process_num + 1for app_id in app_arr[remain_index:]:try:self.app_cores_to_db(app_id)except Exception as e:print(e.args, app_id, "error")if __name__ == '__main__':day = (datetime.now() + timedelta(days=-0)).strftime("%Y-%m-%d")tp = ProcessTest(mon_day=day)tp.to_db()

相关文章:

py并发编程实践-demo

需求 已知条件:appX -请求-> api 多进程实现并发请求api 给定app应用列表,请求api核数 from datetime import datetime, timedelta from multiprocessing import Processclass ProcessTest(object):"""多进程并发请求API&#xff…...

1-2 暴力破解-模拟

模拟:根据题目要求编写代码 可分为:图形排版(根据某种规则输出特定图形)、日期问题、其他模拟 一.图形排版 1.输出梯形(清华大学) 法一:等差数列 分析:每行的星号个数为等差数列2n2…...

机器学习中的Bagging思想

Bagging(Bootstrap Aggregating)是机器学习中一种集成学习方法,旨在提高模型的准确性和稳定性。Bagging的思想源自于Bootstrap采样技术,其基本原理如下: Bootstrap采样: Bagging的核心思想是通过对原始数据…...

基于PyTorch搭建你的生成对抗性网络

前言 你听说过GANs吗?还是你才刚刚开始学?GANs是2014年由蒙特利尔大学的学生 Ian Goodfellow 博士首次提出的。GANs最常见的例子是生成图像。有一个网站包含了不存在的人的面孔,便是一个常见的GANs应用示例。也是我们将要在本文中进行分享的…...

ROS话题(Topic)通信:自定义msg - 例程与讲解

在 ROS 通信协议中,数据是以约定好的结构传输的,即数据类型,比如Topic使用的msg,Service使用的srv,ROS 中的 std_msgs 封装了一些原生的数据类型,比如:Bool、Char、Float32、Int64、String等&am…...

【Vue配置项】 computed计算属性 | watch侦听属性

目录 前言 computed计算属性 什么是计算属性? Vue的原有属性是什么? 得到的全新的属性是什么? 计算属性怎么用? 计算属性的作用是什么? 为什么说代码执行率高了? computed计算属性中的this指向 co…...

linux 查看命令使用说明

查看命令的使用说明的命令有三种,但并不是每个命令都可以使用这三种命令去查看某个命令的使用说明,如果一种不行就使用另外一种试一试。 1.whatis 命令 概括命令的作用 2.命令 --help 命令的使用格式和选项的作用 3.man 命令 命令的作用和选项的详细…...

ceph修复pg inconsistent( scrub errors)

异常情况 1、收到异常情况如下: OSD_SCRUB_ERRORS 12 scrub errors PG_DAMAGED Possible data damage: 1 pg inconsistentpg 6.d is activeremappedinconsistentbackfill_wait, acting [5,7,4]2、查看详细信息 登录后复制 #ceph health detail HEALTH_ERR 12 scrub errors…...

【论文精读】VOYAGER: An Open-Ended Embodied Agent with Large Language Models

Understanding LSTM Networks 前言Abstract1 Introduction2 Method2.1 Automatic Curriculum2.2 Skill Library2.3 Iterative Prompting Mechanism 3 Experiments3.1 Experimental Setup3.2 Baselines3.3 Evaluation Results3.4 Ablation Studies3.5 Multimodal Feedback from …...

Linux安装DMETL5与卸载

Linux安装DMETL5与卸载 环境介绍1 DM8数据库配置1.1 DM8数据库安装1.2 初始化达梦数据库1.3 创建DMETL使用的数据库用户 2 配置DMETL52.1 解压DMETL5安装包2.2 安装调度器2.3 安装执行器2.4 安装管理器2.5 启动dmetl5 调度器2.6 启动dmetl5 执行器2.7 启动dmetl5 管理器2.8 查看…...

Office Word 中的宏

Office Word 中的宏 简介宏的使用将自定义创建的宏放入文档标题栏中的“自定义快速访问工具栏”插入指定格式、内容的字符选中word中的指定文字查找word中的指定文字A,并替换为指定文字B插入文本框并向内插入文字word 表格中的宏操作遍历表格中的所有内容批量设置表…...

qt中d指针

在Qt中,d指针是一种常见的设计模式,也称为"PIMPL"(Private Implementation)或者"Opaque Pointer"。它主要用于隐藏类的实现细节,提供了一种封装和隔离的方式,以便在不影响公共接口的情…...

交易者最看重什么?anzo Capital这点最重要!

交易者最看重什么?有人会说技术,有人会说交易策略,有人会说盈利,但anzo Capital认为Vishal 最看重的应该是眼睛吧! 29岁的Vishal Agraval在9年前因某种原因失去了视力,然而,他的失明并未能阻…...

window 搭建 MQTT 服务器并使用

1. 下载 安装 mosquitto 下载地址: http://mosquitto.org/files/binary/ win 使用 win32 看自己电脑下载相应版本: 一直安装: 记住安装路径:C:\Program Files\mosquitto 修改配置文件: allow_anonymous false 设置…...

Prometheus+Ansible+Consul实现服务发现

一、简介 1、Consul简介 Consul 是基于 GO 语言开发的开源工具,主要面向分布式,服务化的系统提供服务注册、服务发现和配置管理的功能。Consul 提供服务注册/发现、健康检查、Key/Value存储、多数据中心和分布式一致性保证等功能。 在没有使用 consul 服…...

【原创】java+swing+mysql校园活动管理系统设计与实现

前言: 本文介绍了一个校园活动管理系统的设计与实现。该系统基于JavaSwing技术,采用C/S架构,使用Java语言开发,以MySQL作为数据库。系统实现了活动发布、活动报名、活动列表查看等功能,方便了校园活动的发布和管理&am…...

vscode中vue项目引入的组件的颜色没区分解决办法

vscode中vue项目引入的组件的颜色没区分解决办法 图中引入组件和其他标签颜色一样没有区分,让开发者不易区分,很蓝瘦 这个就很直观,解决办法就是你当前的vscode版本不对,你得去找找其他版本,我的解决办法就是去官网历…...

uniapp: 实现pdf预览功能

目录 第一章 实现效果 第二章 了解并解决需求 2.1 了解需求 2.2 解决需求 2.2.1 方法一 2.2.2 方法二 第三章 资源下载 第一章 实现效果 第二章 了解并解决需求 2.1 了解需求 前端需要利用后端传的pdf临时路径实现H5端以及app端的pdf预览首先我们别像pc端一样&#…...

【Pytorch笔记】7.torch.nn (Convolution Layers)

我们常用torch.nn来封装网络,torch.nn为我们封装好了很多神经网络中不同的层,如卷积层、池化层、归一化层等。我们会把这些层像是串成一个牛肉串一样串起来,形成网络。 先从最简单的,都有哪些层开始学起。 Convolution Layers -…...

MySQL内部组件与日志详解

MySQL的内部组件结构 MySQL 可以分为 Server 层和存储引擎层两部分。 Server 层主要包括连接器、查询缓存、分析器、优化器、执行器等,涵盖 MySQL 的大多数核心服务功能,以及所有的内置函数(如日期、时间、数学和加密函数等)&am…...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

HTML 语义化

目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案&#xff1a; 语义化标签&#xff1a; <header>&#xff1a;页头<nav>&#xff1a;导航<main>&#xff1a;主要内容<article>&#x…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...