当前位置: 首页 > news >正文

基于协作mimo系统的RM编译码误码率matlab仿真,对比硬判决译码和软判决译码

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

..................................................................... while(Err <= TL)kErrNum = Num + 1;%产生数据K             = min(K1,K2);Signal0       = round(rand(1,K));Signal        = [Signal0,zeros(1,K1-K2)];%*****************************************************************%RM编码Signal_RM_S2D = func_Encode(Signal,V1);%调制RM_mod_S2D    = modulate(mods,Signal_RM_S2D);%过信道RM_Noise_S2D  = RM_mod_S2D + sqrt(2*N01)*randn(size(RM_mod_S2D)); %*****************************************************************%中继部分RM_demod_S2R  = demodulate(demods,RM_Noise_S2D);Bhat_S2R      = func_Decode_ML_hard(RM_demod_S2R,r+1,m,V1,N1,K1,I1); %RM编码Signal_RM_S2R = func_Encode(Bhat_S2R(1:K),V2);%调制RM_mod_S2R    = modulate(mods,Signal_RM_S2R);%过信道RM_Noise_S2R  = RM_mod_S2R + sqrt(2*N03)*randn(size(RM_mod_S2R)); %*****************************************************************%解调RM_demod_S2D  = demodulate(demods,[RM_Noise_S2D,RM_Noise_S2R]);LEN           = length(RM_demod_S2D);%RM译码Bhat_S2D1     = func_Decode_ML_hard(RM_demod_S2D(1:LEN/2),r+1,m,V1,N1,K1,I1); Bhat_S2D2     = func_Decode_ML_hard(RM_demod_S2D(LEN/2+1:LEN),r,m,V2,N2,K2,I2); %计算误码率Err           = Err + min([sum(xor(Bhat_S2D1(1:K),Signal0)),sum(xor(Bhat_S2D2(1:K),Signal0))]);endErrs(k) = Err/Num/length(Signal);
end    figure
semilogy(SNR,Errs,'b-o');
grid on;
xlabel('SNR');
ylabel('Bit error');save r0.mat SNR Errs
01_103m

4.算法理论概述

        基于协作MIMO系统的RM编译码是无线通信领域中的一项重要技术。在协作MIMO系统中,多个天线协同工作以提供更高的数据传输速率和更好的可靠性。RM(Reed-Muller)码是其中的一种常用编码方案,具有纠错能力强和译码复杂度相对较低的优点。

       Reed-Muller码 (RM码) 可依赖布尔函数(Boolean Functions)进行定义。

       在RM码的译码过程中,通常有两种方法:RM硬判决译码和RM软判决译码。这两种译码方法的主要区别在于它们处理接收信号的方式。

1. RM硬判决译码:

  • 在硬判决译码中,接收到的信号经过解调后,直接进行量化,将连续的信号幅度映射为离散的符号。
  • 随后,这些离散符号被送入RM译码器进行译码操作。
  • 由于在硬判决过程中丢失了部分接收信号的信息,因此硬判决译码的性能通常较软判决译码差一些。

2. RM软判决译码:

  • 与硬判决译码不同,软判决译码在处理接收信号时,保留了更多的信息。
  • 在解调后,接收到的信号不仅包含符号信息,还包含关于信号质量的置信度信息(比如信号的幅度、相位等)。
  • 这些额外的信息被送入RM译码器,可以用于更精确地恢复原始发送的信息。
  • 通常,软判决译码的性能要优于硬判决译码,因为它更充分地利用了接收到的信号信息。

       总结来说,基于协作MIMO系统的RM编译码中,RM硬判决译码和RM软判决译码的主要区别体现在对接收信号的处理方式上。硬判决译码直接量化接收信号为离散符号,而软判决译码则保留更多信号信息,并将其用于译码过程。因此,一般而言,RM软判决译码具有更好的性能,但实现复杂度也可能相对较高。

5.算法完整程序工程

OOOOO

OOO

O

相关文章:

基于协作mimo系统的RM编译码误码率matlab仿真,对比硬判决译码和软判决译码

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 ..................................................................... while(Err < TL…...

Django模型层

模型层 与数据库相关的&#xff0c;用于定义数据模型和数据库表结构。 在Django应用程序中&#xff0c;模型层是数据库和应用程序之间的接口&#xff0c;它负责处理所有与数据库相关的操作&#xff0c;例如创建、读取、更新和删除记录。Django的模型层还提供了一些高级功能 首…...

计算机视觉的应用18-一键抠图人像与更换背景的项目应用,可扩展批量抠图与背景替换

大家好&#xff0c;我是微学AI&#xff0c;今天给大家介绍一下计算机视觉的应用18-一键抠图人像与更换背景的项目应用&#xff0c;可扩展批量抠图与背景替换。该项目能够让你轻松地处理和编辑图片。这个项目的核心功能是一键抠图和更换背景。这个项目能够自动识别图片中的主体&…...

Redis(哈希Hash和发布订阅模式)

哈希是一个字符类型字段和值的映射表。 在Redis中&#xff0c;哈希是一种数据结构&#xff0c;用于存储键值对的集合。哈希可以理解为一个键值对的集合&#xff0c;其中每个键都对应一个值。哈希在Redis中的作用主要有以下几点&#xff1a; 1. 存储对象&#xff1a;哈希可以用…...

php正则表达式汇总

php正则表达式有"/pattern/“、”“、”$“、”.“、”[]“、”[]“、”[a-z]“、”[A-Z]“、”[0-9]“、”\d"、“\D”、“\w”、“\W”、“\s”、“\S”、“\b”、“*”、“”、“?”、“{n}”、“{n,}”、“{n,m}”、“\bword\b”、“(pattern)”、“x|y"和…...

Python与ArcGIS系列(八)通过python执行地理处理工具

目录 0 简述1 脚本执行地理处理工具2 在地理处理工具间建立联系0 简述 arcgis包含数百种可以通过python脚本执行的地理处理工具,这样就通过python可以处理复杂的工作和批处理。本篇将介绍如何利用arcpy实现执行地理处理工具以及在地理处理工具间建立联系。 1 脚本执行地理处理…...

cocos----刚体

刚体&#xff08;Rigidbody&#xff09; 刚体&#xff08;Rigidbody&#xff09;是运动学&#xff08;Kinematic&#xff09;中的一个概念&#xff0c;指在运动中和受力作用后&#xff0c;形状和大小不变&#xff0c;而且内部各点的相对位置不变的物体。在 Unity3D 中&#xff…...

【SAP-HCM】--HR人员信息导入函数

人员基本信息导入函数&#xff1a;HR_MAINTAIN_MASTERDATA 人员其他信息类型导入函数&#xff1a;HR_INFOTYPE_OPERATION 不逼逼&#xff0c;直接上代码&#xff0c;这两个函数还是相对简单易懂的 *根据操作类型查找对应的T529A 操作类型对应的值IF gt_alv IS NOT INITIAL.S…...

【开源】基于JAVA的大学兼职教师管理系统

项目编号&#xff1a; S 004 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S004&#xff0c;文末获取源码。} 项目编号&#xff1a;S004&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、研究内容三、界面展示3.1 登录注册3.2 学生教师管…...

Pyhon函数

import time # # for i in range(1,10): # j1 # for j in range(1,i1): # print(f"{i}x{j}{i*j} " ,end) # print() #复用&#xff0c;代码&#xff0c;精简&#xff0c;复用度高def j99(n1,max10): for i in range(n,max):jifor j in ran…...

使用vuex完成小黑记事本案例

使用vuex完成小黑记事本案例 App.vue <template><div id"app"><TodoHeader></TodoHeader><TodoMain ></TodoMain><TodoFooter></TodoFooter></div> </template><script> import TodoMain from …...

进阶理解:leetcode115.不同的子序列(细节深度)

这道题是困难题&#xff0c;本章是针对于动态规划解决&#xff0c;对于思路进行一个全面透彻的讲解&#xff0c;但是并不是对于基础讲解思路&#xff0c;而是渗透到递推式和dp填数的详解&#xff0c;如果有读者不清楚基本的解题思路&#xff0c;请看我的这篇文章算法训练营DAY5…...

数据结构-哈希表(C语言)

哈希表的概念 哈希表就是&#xff1a; “将记录的存储位置与它的关键字之间建立一个对应关系&#xff0c;使每个关键字和一个唯一的存储位置对 应。” 哈希表又称&#xff1a;“散列法”、“杂凑法”、“关键字&#xff1a;地址法”。 哈希表思想 基本思想是在关键字和存…...

HCIA-综合实验(三)

综合实验&#xff08;三&#xff09; 1 实验拓扑2 IP 规划3 实验需求一、福州思博网络规划如下&#xff1a;二、上海思博网络规划如下&#xff1a;三、福州思博与上海思博网络互联四、网络优化 4 配置思路4.1 福州思博配置在 SW1、SW2、SW3 上配置交换网络SW1、SW2、SW3 运行 S…...

Java程序员的成长路径

熟悉JAVA语言基础语法。 学习JAVA基础知识&#xff0c;推荐阅读书单中的经典书籍。 理解并掌握面向对象的特性&#xff0c;比如继承&#xff0c;多态&#xff0c;覆盖&#xff0c;重载等含义&#xff0c;并正确运用。 熟悉SDK中常见类和API的使用&#xff0c;比如&#xff1…...

几种常用的排序

int[] arr new int[]{1, 2,8, 7, 5};这是提前准备好的数组 冒泡排序 public static void bubbleSort(int[] arr) {int len arr.length;for (int i 0; i < len - 1; i) {for (int j 0; j < len - i - 1; j) {if (arr[j] > arr[j1]) {int temp arr[j];arr[j] ar…...

性能测试【第三篇】Jmeter的使用

线程数:10 ,设置10个并发 Ramp-Up时间(秒):所有线程在多少时间内启动,如果设置5,那么每秒启动2个线程 循环次数:请求的重复次数,如果勾选"永远"将一直发送请求 持续时间时间:设置场景运行的时间 启动延迟:设置场景延迟启动时间 响应断言 响应断言模式匹配规则 包括…...

业务:业务系统检查项参考

名录明细云平台摸底1.原有云平台体系&#xff1a;VMware、openstack、ovirt、k8s、docker、混合云系列及版本 2.原有云平台规模&#xff0c;物理机数量、虚拟机数量、迁移业务系统所占配额 3.待补充系统摸底 (适用于物理主机)每一台虚拟机或物理机&#xff1a; 1.系统全局参数…...

解决公网下,k8s calico master节点无法访问node节点创建的pod

目的&#xff1a;解决pod部署成功后&#xff0c;只能在node节点访问&#xff0c;而master节点无法访问 原因&#xff1a;集群搭建时&#xff0c;没有配置公网进行kubectl操作&#xff0c;从而导致系统默认node节点&#xff0c;使用内网IP加入k8s集群&#xff01;如下&#xff…...

六边形架构

Alistair Cockburn是于1953年出生在美国的一位软件开发方法学家。他毕业于康奈尔大学计算机科学专业&#xff0c;并获得了博士学位。 Cockburn在敏捷软件开发领域做出了许多重要的贡献&#xff0c;他被广泛认可为敏捷方法学的奠基人之一。他提出了许多关于敏捷开发的原则和实践…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时&#xff0c;可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案&#xff1a; 1. 检查电源供电问题 问题原因&#xff1a;多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型&#xff08;Vision-Language Models, VLMs&#xff09;&#xff0c;为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展&#xff0c;机器人仍难以胜任复杂的长时程任务&#xff08;如家具装配&#xff09;&#xff0c;主要受限于人…...

篇章二 论坛系统——系统设计

目录 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 1. 数据库设计 1.1 数据库名: forum db 1.2 表的设计 1.3 编写SQL 2.系统设计 2.1 技术选型 2.2 设计数据库结构 2.2.1 数据库实体 通过需求分析获得概念类并结合业务实现过程中的技术需要&#x…...

《Offer来了:Java面试核心知识点精讲》大纲

文章目录 一、《Offer来了:Java面试核心知识点精讲》的典型大纲框架Java基础并发编程JVM原理数据库与缓存分布式架构系统设计二、《Offer来了:Java面试核心知识点精讲(原理篇)》技术文章大纲核心主题:Java基础原理与面试高频考点Java虚拟机(JVM)原理Java并发编程原理Jav…...