当前位置: 首页 > news >正文

Python中的Random模块详解:生成随机数与高级应用

798901875484141b4307f77cb8f905c0.jpeg

在Python编程中,随机数生成是许多应用的基础之一。random模块为我们提供了生成伪随机数的丰富工具,从简单的随机数生成到复杂的应用场景,都有很多功能可以探索。本文将深入介绍random模块的各个方面,通过详实的示例代码,帮助大家更全面地了解和应用这一模块。

1. 随机数生成基础

1.1 random()函数

random()函数是random模块最基础的功能之一,它生成一个0到1之间的随机浮点数。

import randomrandom_number = random.random()
print(f"Random Number: {random_number}")

1.2 randrange()函数

randrange(start, stop, step)函数生成一个在指定范围内以指定步长递增的随机整数。

random_integer = random.randrange(1, 10, 2)
print(f"Random Integer: {random_integer}")

1.3 randint()函数

randint(a, b)函数生成一个在[a, b]范围内的随机整数。

random_integer = random.randint(1, 100)
print(f"Random Integer: {random_integer}")

这些基础的函数提供了灵活的随机数生成方式,适用于各种应用场景。

2. 随机序列操作

2.1 choice()函数

choice(seq)函数从给定的序列中随机选择一个元素返回。

colors = ['red', 'blue', 'green', 'yellow']
random_color = random.choice(colors)
print(f"Random Color: {random_color}")

2.2 shuffle()函数

shuffle(seq)函数用于将序列中的元素随机排序。

numbers = [1, 2, 3, 4, 5]
random.shuffle(numbers)
print(f"Shuffled Numbers: {numbers}")

2.3 sample()函数

sample(population, k)函数返回从总体中选择的唯一元素的随机列表。

cards = ['A', '2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K']
random_cards = random.sample(cards, k=5)
print(f"Random Cards: {random_cards}")

这些函数对于需要从序列中随机选择元素或对序列进行随机排序的情况非常有用。

3. 随机分布

3.1 均匀分布

uniform(a, b)函数返回位于[a, b]范围内的均匀分布的随机浮点数。

uniform_number = random.uniform(1.0, 5.0)
print(f"Uniform Number: {uniform_number}")

3.2 正态分布

gauss(mu, sigma)函数返回符合指定均值和标准差的正态分布的随机浮点数。

normal_number = random.gauss(0, 1)
print(f"Normal Number: {normal_number}")

这些分布函数可以满足更高级的随机数生成需求,尤其在模拟实验或统计学中有广泛应用。

4. 应用场景

4.1 随机密码生成器

import stringdef generate_random_password(length):characters = string.ascii_letters + string.digits + string.punctuationpassword = ''.join(random.choice(characters) for _ in range(length))return passwordrandom_password = generate_random_password(12)
print(f"Random Password: {random_password}")

4.2 随机抽奖程序

participants = ['Alice', 'Bob', 'Charlie', 'David', 'Eva']winner = random.choice(participants)
print(f"The winner is: {winner}")

4.3 模拟实验

def simulate_coin_tosses(num_tosses):results = {'Heads': 0, 'Tails': 0}outcomes = ['Heads', 'Tails']for _ in range(num_tosses):results[random.choice(outcomes)] += 1return resultssimulation_results = simulate_coin_tosses(1000)
print(f"Simulation Results: {simulation_results}")

这些应用场景展示了random模块在实际项目中的广泛应用,从生成密码到抽奖,再到模拟实验,都能方便地使用随机数。

5. 种子与可复现性

为了实现可复现性,random模块提供了seed(seed)函数,通过设置种子可以使随机数生成过程变得可预测。

random.seed(42)  # 设置种子
random_number = random.random()
print(f"Random Number with Seed: {random_number}")

这对于需要在不同运行之间获得相同随机数序列的情况非常有用。

总结

random模块为Python开发者提供了强大的随机数生成工具。从基础的随机数生成到序列操作和分布生成,该模块的功能十分全面。通过random模块,我们能够轻松生成均匀分布或正态分布的随机数,实现各种实际应用场景,如密码生成、抽奖程序和模拟实验。

随机密码生成器的例子展示了如何使用random模块创建安全的密码,而随机抽奖程序则演示了如何轻松地从参与者中随机选择一个获胜者。模拟实验的应用则突显了random模块在统计学和科学研究中的价值,通过模拟多次投掷硬币,能够近似计算出正反面出现的概率。

对于需要结果可复现性的情况,random模块还提供了种子设置的机制,确保在相同种子下生成的随机数序列一致。这对于实验重现和调试过程中的稳定性是非常重要的。

总体来说,random模块在Python编程中扮演着关键的角色,为开发者提供了灵活性和可控性。通过深入理解和熟练运用random模块,能够更加轻松地处理各类随机数需求,使其应用更为广泛而高效。

如果你觉得文章还不错,请大家 点赞、分享、留言 下,因为这将是我持续输出更多优质文章的最强动力!

更多Python学习内容:ipengtao.com

干货笔记整理

  100个爬虫常见问题.pdf ,太全了!

Python 自动化运维 100个常见问题.pdf

Python Web 开发常见的100个问题.pdf

124个Python案例,完整源代码!

PYTHON 3.10中文版官方文档

耗时三个月整理的《Python之路2.0.pdf》开放下载

最经典的编程教材《Think Python》开源中文版.PDF下载

75108145626b983397e556a28f524bbf.png

相关文章:

Python中的Random模块详解:生成随机数与高级应用

在Python编程中,随机数生成是许多应用的基础之一。random模块为我们提供了生成伪随机数的丰富工具,从简单的随机数生成到复杂的应用场景,都有很多功能可以探索。本文将深入介绍random模块的各个方面,通过详实的示例代码&#xff0…...

(论文阅读32/100)Flowing convnets for human pose estimation in videos

32.文献阅读笔记 简介 题目 Flowing convnets for human pose estimation in videos 作者 Tomas Pfister, James Charles, and Andrew Zisserman, ICCV, 2015. 原文链接 https://arxiv.org/pdf/1506.02897.pdf 关键词 Human Pose Estimation in Videos 研究问题 视频…...

【设计一个缓存--针对各种类型的缓存】

设计一个缓存--针对各种类型的缓存 1. 设计顶层接口2. 设计抽象类 -- AbstractCacheManager3. 具体子类3.1 -- AlertRuleItemExpCacheManager3.2 -- AlertRuleItemSrcCacheManager 4. 类图关系 1. 设计顶层接口 // 定义为一个泛型接口,提供给抽象类使用 public interface Cach…...

Django部署时静态文件配置的坑

Django部署时静态文件配置配置的坑 近期有个需求是用django进行开发部署,结果发现静态文件配置的坑是真的多,另外网上很多的内容也讲不清楚原理,就是这样这样,又那样那样,进了不少坑,这里记录一下关于css,…...

Android---网络编程优化

网络请求操作是一个 App 的重要组成部分,程序大多数问题都是和网络请求有关。使用 OkHttp 框架后,可以通过 EventListener 来查看一次网络请求的详细情况。一次完整的网络请求会包含以下几个步骤。 也就是说,一次网络请求的操作是从 DNS 解析…...

《算法通关村——不简单的字符串转换问题》

《算法通关村——不简单的字符串转换问题》 8. 字符串转换整数 (atoi) 请你来实现一个 myAtoi(string s) 函数,使其能将字符串转换成一个 32 位有符号整数(类似 C/C 中的 atoi 函数)。 函数 myAtoi(string s) 的算法如下: 读入…...

给VSCode插上一双AI的翅膀

#AI编程助手哪家好?DevChat“真”好用# 文章目录 前言一、安装DevChat1.1、访问地址1.2、注册1.3、在VSCode里安装DevChat插件1.3.1、未安装状态1.3.2、已安装状态 二、设置Access Key2.1. 点击左下角管理(“齿轮”图标)—命令面板&#xff…...

2023年亚太杯数学建模思路 - 案例:异常检测

文章目录 赛题思路一、简介 -- 关于异常检测异常检测监督学习 二、异常检测算法2. 箱线图分析3. 基于距离/密度4. 基于划分思想 建模资料 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 一、简介 – 关于异常…...

机器学习的医疗乳腺癌数据的乳腺癌疾病预测

项目视频讲解:基于机器学习的医疗乳腺癌数据的乳腺癌疾病预测 完整代码数据分享_哔哩哔哩_bilibili 效果演示: 代码: #第一步!导入我们需要的工具 import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns %matplotlib inlin…...

解析:什么是生成式AI?与其他类型的AI有何不同?

原创 | 文 BFT机器人 快速浏览一下头条新闻,你会发现生成式AI似乎无处不在。事实上,一些新闻标题甚至可能是通过生成式AI编写的,例如OpenAI旗下的ChatGPT,这个聊天机器人已经展现出了生成看起来像人类所写文本的惊人能力。 当人们…...

国产化项目改造:使用达梦数据库和东方通组件部署,前后端分离框架

前提&#xff1a;前后端分离前后端包都要用war包。 1、springboot后端改变war包 pom文件添加 <packaging>war</packaging>添加依赖&#xff0c;并且支持tomcat<!-- war包 --><dependency><groupId>org.springframework.boot</groupId><…...

Nginx实现负载均衡

Nginx实现负载均衡 负载均衡的作用 1、解决单点故障&#xff0c;让web服务器构成一个集群 2、将请求平均下发给后端的web服务器 负载均衡的软硬件介绍 负载均衡软件&#xff1a; # nginx 四层负载均衡&#xff1a;stream&#xff08;nginx 1.9版本以后有stream模块&#x…...

SpringCloud 2022有哪些变化

目录 前提条件 AOT支持 Spring Native支持 前提条件 Spring Cloud 2022.0.0是构建在Spring Framework 6.0和Spring Boot 3.0 之上的一S个主要版本。 JDK要求最低需要是Java 17J2EE要求最低需要Jakarta EE 9 AOT支持 Spring cloud 2022支持AOT编译&#xff0c;它是将程序源…...

如何快速本地搭建悟空CRM结合内网穿透工具高效远程办公

&#x1f308;个人主页&#xff1a;聆风吟 &#x1f525;系列专栏&#xff1a;数据结构、Cpolar杂谈 &#x1f516;少年有梦不应止于心动&#xff0c;更要付诸行动。 文章目录 &#x1f4cb;前言一. 无需公网IP&#xff0c;使用cpolar实现悟空CRM远程访问二. 通过公网来访问公司…...

Docker打包Python项目

1. 简介 Docker是一种开源的容器化平台&#xff0c;可以将应用程序及其依赖项打包到一个轻量级、可移植的容器中。通过使用Docker&#xff0c;可以简化Python项目的部署和运行&#xff0c;提高开发效率和应用程序的可移植性。 本文将介绍如何使用Docker来打包Python项目。我们…...

【Java并发编程一】并发与并行

为什么引入并发 摩尔定理逐渐失效&#xff0c;单核性能很难提升&#xff0c;通过组合多核性能来进一步满足实际需要&#xff0c;从而引入并发编程。在大部分场景下&#xff0c;并行是由于串行的&#xff0c;并行可以优化非关键节点的时间消耗。 并发的三大特性 原子性  某个…...

MFC/QT 一些快忘记的细节:

1&#xff1a;企业应用中&#xff0c;MFC平台除了用常见的对话框模式还有一种常用的就是单文档模式&#xff0c; 维护别人的代码&#xff0c;不容易区分,看它与程预序认同名cpp&#xff0c;就知道了&#xff0c;比如项目名称为 DoCMFCDemo&#xff0c;那么就看BOOL CDocMFCDe…...

在服务器上部署MVC 6应用程序

在服务器上成功部署MVC 6应用程序&#xff08;现在更为称为ASP.NET Core MVC&#xff09;涉及一系列步骤。以下是一般的指导步骤&#xff1a; 1. 准备服务器环境&#xff1a; - 确保服务器上安装了.NET Core Runtime和.NET Core SDK。可以从[.NET下载页面](https://dotnet.mi…...

golang学习笔记——斐波纳契数列

斐波纳契数列 编写一个程序来计算某个数字的斐波纳契数列。 斐波那契数列是一个数字列表&#xff0c;其中每个数字是前两个斐波那契数字之和。 例如&#xff0c;数字 6 的序列是 1,1,2,3,5,8&#xff0c;数字 7 的序列是 1,1,2,3,5,8,13&#xff0c;数字 8 的序列是 1,1,2,3,5…...

学习raft协议(1)

CAP C: 一致性 强调数据的正确性&#xff0c;每次读操作&#xff0c;要么读到最新&#xff0c;要么读失败 A:可用性 不发生错误&#xff0c;也不能出现过长的等待时间. P:分区容错性 在网络环境不可靠的背景下&#xff0c;整个系统仍然是正常运作的两种流派 &#xff08;1&am…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统&#xff1a;ubuntu22.04 IDE:Visual Studio Code 编程语言&#xff1a;C11 题目描述 地上有一个 m 行 n 列的方格&#xff0c;从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子&#xff0c;但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

Java数值运算常见陷阱与规避方法

整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...

Golang——6、指针和结构体

指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧

上周三&#xff0c;HubSpot宣布已构建与ChatGPT的深度集成&#xff0c;这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋&#xff0c;但同时也存在一些关于数据安全的担忧。 许多网络声音声称&#xff0c;这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...

华为OD机试-最短木板长度-二分法(A卷,100分)

此题是一个最大化最小值的典型例题&#xff0c; 因为搜索范围是有界的&#xff0c;上界最大木板长度补充的全部木料长度&#xff0c;下界最小木板长度&#xff1b; 即left0,right10^6; 我们可以设置一个候选值x(mid)&#xff0c;将木板的长度全部都补充到x&#xff0c;如果成功…...