当前位置: 首页 > news >正文

CCF ChinaSoft 2023 论坛巡礼|软件测试产教研融合论坛

2023年CCF中国软件大会(CCF ChinaSoft 2023)由CCF主办,CCF系统软件专委会、形式化方法专委会、软件工程专委会以及复旦大学联合承办,将于2023年12月1-3日上海国际会议中心举行。

本次大会主题是“智能化软件创新推动数字经济与社会发展”,学术、工业、教育、竞赛等分论坛活动40余场,期待您的参与!

目前大会火热报名中!

CCF ChinaSoft 2023官方首页:

http://chinasoft.ccf.org.cn/

点击文末“阅读原文”或扫描下方二维码进入官方注册通道:

https://conf.ccf.org.cn/chinasoft2023

a33a2bd01c1c7abf4b0af4fd4b770be4.jpeg

d74fbf4be2bba038129e81b21cc0bf7b.jpeg

✦  +

+

论坛巡礼

论坛名称:软件测试产教研融合论坛

时间:2023年12月02日09:00-12:00

地点:复旦大学邯郸校区逸夫楼601会议室

论坛简介:

我国软件产业正处于快速发展的阶段,软件测试作为软件质量保证的关键环节,其重要性日益凸显。为了适应产业发展需求,提高软件测试人才的综合素质,产教研融合成为了当前软件测试领域的重要发展趋势。本论坛旨在搭建一个互动、共享、创新的平台,探讨软件测试领域的前沿技术、产业动态和教学改革。我们将围绕基础软件和大模型的软件测试产教研融合主题,展开深入的交流和研讨,介绍软件测试最新研究成果,推动学术界与产业界的交流与合作,加速技术成果转化。探讨软件测试专业人才培养模式的创新,分享优秀教学资源和实践经验,提高教育教学质量。推动产业、教育、科研三方资源的整合,促进产学研合作,为我国软件测试人才培养提供有力支持。

日程安排

Schedule

e797ebb2002b57ec03a6fabc8d91a702.png

论坛主席

  Forum Chair

f500fdd44ec9837f586dfb2f9c4764f1.png

陈振宇南京大学

南京大学软件学院教授、博导,主要从事智能软件工程的研究。中国计算机学会杰出会员与杰出讲者,国家一流本科课程《软件测试》负责人。曾主持国家重点研发计划课题1项和国家自然科学基金重点项目1项。研究成果已经在中船重工、航天科工、中国电科、国家电网、百度、阿里、腾讯、华为等知名企业转化,研究成果获2012年度江苏省科学技术奖一等奖、2015年湖北省科技进步奖一等奖、2017年CCF NASAC-东软青年软件创新奖、2021年中国电子学会科技进步奖一等奖、2021年江苏省教学成果奖特等奖、2022年国家级教学成果奖一等奖。

论坛嘉宾

Forum Guests

c0545cb623dcf81e2a19b57c2aa7a67e.png

陈俊洁(天津大学

天津大学智能与计算学部特聘研究员,博士生导师,软件工程团队负责人,国家优青项目获得者;研究方向主要为基础软件测试、可信人工智能、数据驱动的软件工程等。荣获中国科协青年托举人才、CCF优博、电子学会自然科学一等奖等奖项,入围斯坦福大学发布的年度全球前2%顶尖科学家榜单。近年发表CCF A类论文60余篇,获六项最佳论文奖(包括五项CCF-A类会议ACM SIGSOFT杰出论文奖,以及一项CCF-B类会议ISSRE的唯一最佳论文奖)。成果在华为、百度等多家知名企业落地。担任CCF-A类会议ASE 2021评审过程主席,Dagstuhl研讨会联合主席,以及软件工程领域全部CCF-A类会议的程序委员会成员等。

报告题目

数据驱动的编译系统测试方法

摘要

为了保障编译系统这一类基础软件的质量,本项研究提出数据驱动的编译系统测试方法,通过细粒度地挖掘与分析历史揭示缺陷的测试程序特性,构建代码语义理解模型,进而利用语义多样性引导生成合法且多样的新测试程序。该种方式显著提升编译系统测试效果与效率,已在广泛使用的编译系统检测到数十个真实未知缺陷,显著优于领域先进技术。

065bfebe8314eb3a59908385602d0185.png

朱少民(同济大学

同济大学特聘教授、CCF TF软件质量工程SIG主席、软件绿色联盟标准评测组组长、AiDD峰会发起人。近三十年来一直从事软件工程的教学和研究工作,先后获得多项省、部级科技进步奖,已出版了二十多部著作和4本译作。之前曾任思科(中国)软件有限公司QA高级总监、IEEE ICST 2019工业论坛主席、IEEE ICST、QRS和DSA、NASAC程序委员、《软件学报》审稿人等。

报告题目

大模型时代软件测试方向与趋势

摘要

在软件研发领域应用Al算法或技术,软件测试是走在前面的,从早期采用遗传算法、粒子群优化算法等生成测试数据开始,Al技术渗透到软件测试的各个方面,包括测试建模、测试用例集优化、GUI白动化测试、测试结果分析等各个方面。大模型不断涌现,对软件研发和测试带来新的机遇和挑战,也迫使软件行业从业人员重新思考软件测试新的方向。本次分享和讨论将着重讨论如何应用大模型为软件测试赋能、如何借助LLM相关技术更高效地完成测试工作,以及未来技术发展方向。

7b3b8e94244bb2028951970453a994bd.png

原玉娇(贝壳

北京理工大学硕士毕业,曾就职于滴滴、字节,目前在贝壳担任资深工程师,负责大模型技术在测试域企业级的工程化探索和应用,基于“领域知识+场景+agent”构建垂直域智能体实现大模型能力延伸,包括测试需求分析、测试用例自动生成、缺陷追踪和智能定位等,优化协同流程机制、助力业务快速迭代从而提升自动化产能。

报告题目

大模型在测试域提效挑战和方案

摘要

测试提效是保障企业生产交付效率的关键。在贝壳因业务多样性带来测试多类别,多领域的特征,因此质量工具建设存在高维护和学习成本(比如环境、性能、稳定性、多端自动化、数据等)。此外,测试人员存在质量方差,质量经验及能力难以迁移导致知识的复用率低。本报告介绍在贝壳基于llm AI应用在测试域提效的挑战和方案,包括如何基于知识工程构建垂直域的质量大脑,如何通过场景扩展agent应用到实际生产交付流程中保障效率提升。

102e8006d03910667e4b78d5f563e595.png

王俊杰中国科学院软件研究所

中国科学院软件研究所研究员,博士生导师,中国科学院特聘研究岗位,软件所杰出青年,主要从事智能化软件工程、软件质量等方面的研究,近年来主要关注移动应用测试、智能软件测试、众包测试等。在国际著名学术期刊/会议发表50余篇高水平学术论文,四次荣获ACM/IEEE杰出论文奖。主持和参与了多项国家自然科学基金项目、科技部重点研发计划、CCF-华为胡杨林基金等。担任CCF A类期刊TSE的副主编(Associate Editor),FSE、ICST、ICSE demo等的PC member,TSE、TOSEM、EMSE、AUSE等期刊的审稿人。

报告题目

基于大模型的移动应用测试

摘要

大语言模型已经在各种领域的下游任务中展现出了令人惊叹的效果,这次报告将介绍我们研究团队近期利用大模型进行移动应用测试方面的一些工作,探索如何充分利用大语言模型的能力来提升移动应用测试的效果和效率。我们这次报告将展示我们在自动生成多样性和复杂性测试输入方面的方法(相关成果发表在ICSE2023),还会分享关于如何利用大语言模型生成GUI测试路径的研究进展(相关成果发表在ICSE2024),以及针对GUI输入文本的模糊测试技术(相关成果发表在ICSE2024)。这些相关技术不仅能够服务于移动应用测试,相关思路也能支撑其他类型的测试任务。

399416ab9c767be69ec23a9ab424a057.png

娄一翎(复旦大学

复旦大学计算机科学技术学院青年副研究员,2016年毕业于北京大学信息科学技术学院,获理学学士学位,2021年毕业于北京大学信息科学技术学院,获理学博士学位,博士毕业后在美国普渡大学计算机系任博后研究员。主要研究方向包括软件工程、软件测试与分析、智能化软件开发等。目前已在ICSE、FSE、ASE、ISSTA、TSE等软件工程国际高水平会议和期刊上发表论文二十余篇,获ACM SIGSOFT Distinguished Paper Award、IEEE TCSE Distinguished Paper Award,并担任ICSE、FSE、ASE、ISSTA等国际会议程序委员会委员。

报告题目

基于大模型的单元测试生成

摘要

人工编写单元测试费时费力。传统方法所生成的单元测试代码往往不符合开发者的编码风格,对单元测试的编写效率提升有限。大语言模型(LLMs)在大规模代码语料上进行预训练,往往能够生成更接近开发者风格的、更有意义的代码,因此在单元测试生成方面具有巨大潜力。本报告将分享ChatGPT等代表性大模型在单元测试生成上的能力评估,包括其所生成单元测试代码的正确性、充分性、可读性和可用性等;进而提出基于大模型的高质量单元测试生成方法,并探索该方法在开源和商用大模型上的效果。

2c6370dc417a10e531c1d85228d1ea29.png

周建祎(华为

华为云PaaS技术创新Lab算法工程师,本硕毕业于北京航空航天大学,博士毕业于北京大学计算机学院。博士阶段的研究方向包括测试执行优化和深度学习系统测试,在CCF-A类会议或期刊共发表4篇论文。22年获得博士学位入职华为。入职以后围绕单元测试用例自动生成和自动演化等方向展开工作。近期带领团队探索基于大模型生成单元测试用例的实践。

报告题目

华为云智能单元测试生成实践

摘要

随着软件系统规模扩大,保障软件系统正确性需要做的工作越来越多。大量的维护、测试人员投入在保证软件系统的正确性上。业界也逐渐意识到测试左移的重要性。如何自动生成单元测试用例也逐渐成为业界关注的热点。早期,主流的单元测试用例自动生成技术主要利用代码分析技术自动生成单元测试用例,主要面临的技术难点包括:复杂对象构造、多语言拓展、可读性提升等。当下,随着大模型的能力在许多领域取得了突破性进展,传统技术的一些局限找到了更好的解决方案。我们尝试利用之前积累的代码分析技术结合大模型技术,进一步提升单元测试用例自动生成的效果,提升研发和测试效率。本次报告将分享如何利用大模型技术自动生成单元测试用例,以及在华为的落地实践。

6ce3f4eeb3e18d0c3bc594dc84ef56e4.jpeg

相关文章:

CCF ChinaSoft 2023 论坛巡礼|软件测试产教研融合论坛

2023年CCF中国软件大会(CCF ChinaSoft 2023)由CCF主办,CCF系统软件专委会、形式化方法专委会、软件工程专委会以及复旦大学联合承办,将于2023年12月1-3日在上海国际会议中心举行。 本次大会主题是“智能化软件创新推动数字经济与社…...

浅谈WPF之控件模板和数据模板

WPF不仅支持传统的Windows Forms编程的用户界面和用户体验设计,同时还推出了以模板为核心的新一代设计理念。在WPF中,通过引入模板,将数据和算法的“内容”和“形式”进行解耦。模板主要分为两大类:数据模板【Data Template】和控…...

微信小程序会议OA首页-开发说明创建项目关于flex布局关于尺寸单位(rpx)关于WXS轮播图会议信息

目录 1. 创建项目 2. 关于flex布局 3. 关于尺寸单位(rpx) 4. 关于WXS 4. 轮播图 5. 会议信息 1. 创建项目 基于微信原生开发工具,稳定版 Stable Build (1.06.22010310) 创建项目前,请确定有小程序测试账号 使用向导创建一个…...

Linux上编译和安装SOFA23.06

前言 你可以直接使用编译安装好的SOFA版本Installing from all-included binaries (v23.06.00): 如果你想自己编译,可以看我下面写的内容,不过绝大多数是从官网来的,如果和官网有出入,建议还是以官网为准。 在Linux下…...

定时任务 Spring Task

一、介绍 Spring Task 是Spring框架提供的任务调度工具,可以按照约定的时间自动执行某个代码逻辑。 定位: 定时任务框架 作用: 定时自动执行某段Java代码 二、cron 表达式 cron表达式在线生成器:https://cron.qqe2.com/ 1、说明…...

golang 上传图片 --chatGPT

问:makeImgUpload(path string) 实现发送发送图片, 发送类型为 multipart/form-data gpt: 下面是一个简单的 makeImgUpload 函数的实现,用于发送图片并以 multipart/form-data 格式进行上传。请注意,此代码假设图片文件路径是正确…...

Android Studio 写一个Java调用c++ 的demo

前提条件: 本地已经配置好了ndk环境,如果没有配置好,建议参考macos 配置ndk环境-CSDN博客 这篇链接。 新建一个Empty Project 比如我这里的Project的名字是HelloJNI,包名是com.example.hellojni 然后在src目录下,右键选择Add C …...

Pandas数据操作_Python数据分析与可视化

Pandas数据操作 排序操作对索引进行排序按行排序按值排序 删除操作算数运算去重duplicated()drop_duplicates() 数据重塑层次化索引索引方式内层选取数据重塑 排序操作 对索引进行排序 Series 用 sort_index() 按索引排序,sort_values() 按值排序; Dat…...

【Debug】查询的数据量比数据库中的数据量还要多

今天前端反馈了一个bug,某个接口返回的数据很多,我到mysql数据库看了一下,查询的表名为trs_risk,其中只有1000多条数据,而页面返回有5000多条数据!! 匪夷所思啊,我定位到Mapper层的…...

nodejs微信小程序-慢性胃炎健康管理系统的设计与实现-安卓-python-PHP-计算机毕业设计

目 录 摘 要 I ABSTRACT II 目 录 II 第1章 绪论 1 1.1背景及意义 1 1.2 国内外研究概况 1 1.3 研究的内容 1 第2章 相关技术 3 2.1 nodejs简介 4 2.2 express框架介绍 6 2.4 MySQL数据库 4 第3章 系统分析 5 3.1 需求分析 5 3.2 系统可行性分析 5 3.2.1技术可行性:…...

二十一、数组(1)

本章概要 数组特性 用于显示数组的实用程序 一等对象返回数组 简单来看,数组需要你去创建和初始化,你可以通过下标对数组元素进行访问,数组的大小不会改变。大多数时候你只需要知道这些,但有时候你必须在数组上进行更复杂的操作…...

react hook 获取setState的新值

利用useRef 存储最新值 let [count,setCount] useState(0)let countRef useRef(count)let handleClick function (){setCount((prev)>{countRef.current prev1return countRef.current})console.info(countRef.current)}利用useRef let [count,setCount] useState(0)le…...

JVM判断对象是否存活之引用计数法、可达性分析

目录 前言 引用计数法 概念 优点 缺点 可达性分析 概念 缺点: 扩展: 1.GC Roots 概念 2.STW (Stop the world) 前言 JVM有两种算法来判断对象是否存活,分别是引用计数法和可达性分析算法,针对可达性分析算法STW时间长、…...

报道 | 2023年12月-2024年2月国际运筹优化会议汇总

2023年12月-2024年2月召开会议汇总: The 16th Annual International Conference on Combinatorial Optimization and Applications (COCOA 2023) Location: Virtual Important dates: Conference: December 11, 2023 (Start) - December 13, 2023 (End) Details…...

【科技素养】蓝桥杯STEMA 科技素养组模拟练习试卷C

单选题 1、A right triangle has a side that is 5cm long, and its hypotenuse is 13cm long.The area of the triangle is (). A、30 cm2 B、60 cm2 C、65 cm2 D、32.5 cm2 答案:A 2、一位旅客安检后走在前往登机口的路上。路途中一部…...

“升级图片管理,优化工作流程——轻松将JPG转为PNG“

在图片时代,无论是工作还是生活,图片管理都显得尤为重要。批量处理图片,将JPG格式轻松转换为PNG格式,能够使您的图片管理更优化,提高工作效率。 首先,我们进入首助编辑高手主页面,会看到有多种…...

基于Springboot的地方美食分享网站(有报告)。Javaee项目,springboot项目。

演示视频: 基于Springboot的地方美食分享网站(有报告)。Javaee项目,springboot项目。 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。 项目介绍: 采用…...

助力水泥基建裂痕自动化巡检,基于yolov5融合ASPP开发构建多尺度融合目标检测识别系统

道路场景下的自动化智能巡检、洞体场景下的壁体类建筑缺陷自动检测识别等等已经在现实生活中不断地落地应用了,在我们之前的很多博文中也已经有过很多相关的实践项目经历了,本文的核心目的是想要融合多尺度感受野技术到yolov5模型中以期在较低参数量的情…...

rk3588使用vscode远程debug 配置文件

进入调试口,需要本地和远程都装C/C estension 下面是在调mpi_enc_test的launch.json 文件自己make生成的 makefile 没改过 args项是输入参数,配置了相机输入,具体参数看他的demo说明, 记录一下,方便以后拷贝方便 {// …...

隐私协议 Secret Network 宣布使用 Octopus Network 构建的 NEAR-IBC 连接 NEAR 生态

2023年11月 NearCon2023 活动期间,基于 Cosmos SDK 构建的隐私协议 Secret Network,宣布使用 Octopus Network 开发的 NEAR-IBC,于2024年第一季度实现 Secret Network 与 NEAR Protocol 之间的跨链交互。 这将会是Cosmos 生态与 NEAR 之间的首…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

css实现圆环展示百分比,根据值动态展示所占比例

代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

srs linux

下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935&#xff0c;SRS管理页面端口是8080&#xff0c;可…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马&#xff08;服务器方面的&#xff09;的原理&#xff0c;连接&#xff0c;以及各种木马及连接工具的分享 文件木马&#xff1a;https://w…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向&#xff0c;可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...