1.rk3588的yolov5运行:pt_onnx_rknn转换及rknn在rk3588系统python运行
自己有点笨,查资料查了一周才完美的实现了yolov5在rk3588环境下的运行,在这里写具体步骤希望大家少走弯路。具体步骤如下:
一、yolov5的原代码下载及pt文件转换为onnx文件
1.yolov5的原代码下载及环境搭建
在这里一定要下载正确版本的源代码,否则pt到onnx文件的转换很容易出错。进入网盘链接下载即可:https://pan.baidu.com/s/1D-9UzyfNgrACdqliLwkrEg ,提取码:qnbv
下载后在\yolov5-master\文件夹下打开requirements.txt文件,里面有很多需要安装的包,根据这个文件安装好所有yolov5需要的包即可。
2.pt文件转换为onnx文件
yolov5训练好的权重文件为pt文件,由于训练麻烦,在这里我们用自带的yolov5s.pt文件转换。我已经将这个文件放在\yolov5-master\文件夹下面,大家可以找到。
在转换之前,我们需要对yolov5的几个py文件做个修改。修改如下:
(1) 修改models/yolo.py Detect类下的forward函数。首先将该forward函数注释了(一定记着,模型训练时必须用这个函数,不要删了),再修改为下面的函数即可:
def forward(self, x):z = [] # inference outputfor i in range(self.nl):x[i] = self.m[i](x[i]) # convreturn x
修改前的函数如下(代码已经被我注释):
# def forward(self, x):# z = [] # inference output# for i in range(self.nl):# x[i] = self.m[i](x[i]) # conv# bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)# x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()## if not self.training: # inference# if self.dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:# self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)## if isinstance(self, Segment): # (boxes + masks)# xy, wh, conf, mask = x[i].split((2, 2, self.nc + 1, self.no - self.nc - 5), 4)# xy = (xy.sigmoid() * 2 + self.grid[i]) * self.stride[i] # xy# wh = (wh.sigmoid() * 2) ** 2 * self.anchor_grid[i] # wh# y = torch.cat((xy, wh, conf.sigmoid(), mask), 4)# else: # Detect (boxes only)# xy, wh, conf = x[i].sigmoid().split((2, 2, self.nc + 1), 4)# xy = (xy * 2 + self.grid[i]) * self.stride[i] # xy# wh = (wh * 2) ** 2 * self.anchor_grid[i] # wh# y = torch.cat((xy, wh, conf), 4)# z.append(y.view(bs, self.na * nx * ny, self.no))## return x if self.training else (torch.cat(z, 1), ) if self.export else (torch.cat(z, 1), x)
(2)修改yolov5-master/export.py文件
把第838行的'--opset'的defaut修改为12(一定要修改为12),修改后的代码如下:
parser.add_argument('--opset', type=int, default=12, help='ONNX: opset version')
如果运行export.py报错,则修改export.py文件的760行的代码,修改前后的代码如下:
修改前:
shape = tuple((y[0] if isinstance(y, tuple) else y).shape) # model output shape
修改后:
shape = tuple(y[0].shape)
其他修改的地方,在以上百度网盘的yolov5的代码中已经修改完,其中,以上几步也已经修改完。大家直接运行即可。
运行方式:直接运行pycharm文件,或者终端运行:python export.py
注意:
如果下载了其他的yolov5,除了修改上述的内容,还需要修改export.py的其他内容如下:
1.修改export_saved_model函数和run函数里面的一些参数,基本上模型参数,比如置信度等;
2.修改parse_opt函数里面的一些参数,常见修改如下:
(1)'--weights':后面需要修改为我们生成的pt文件的路径(可以是相对路径或者绝对路径),如我将要转换的模型yolov5s.pt,用相对路径修改后如下:
parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
(2)'--include':后面修改为“onnx",y因为我们要转换为onnx型。转换后如下:
parser.add_argument('--include',nargs='+',default=['onnx'],#'torchscript'help='torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle')
(3)也可以修改'--iou-thres'和'--conf-thres'参数,该参数是yolov5的置信度,会影响模型最终检测的精度,但不会影响pt文件转换为onnx文件的成功与否。其他的大家可以根据需要进行修改,前面的修改后,Pt文件就可以成功转换为onnx文件了。
二、onnx文件转换为rknn文件
第一步将pt文件转换为了onnx文件,这里开始将onnx文件转换为rknn文件,这步转换我们需要搭建ubuntu20.04的虚拟环境,然后在ubuntu20.04的虚拟环境下转换(我开始用的ubuntu18.04的虚拟环境,但转换失败,所以大家还是乖乖的用ubuntu20.04吧)
1.搭建ubuntu20.04环境(这里不作具体介绍)
大家去官网下载ubuntu-20.04.6-desktop-amd64.iso文件即可,下载后,需要下载VMware-workstation-full-17.0.0-20800274.exe,大家可以去百度网盘下载,链接如下:https://pan.baidu.com/s/1UHU9ZiCNpqUbazdg0NW7sQ 提取码:rpff
之后具体的安装可以参照如下网址:【Ubuntu 20.04 虚拟机安装教程详解】_ubuntu20 虚拟机_千北@的博客-CSDN博客
2.安装Anaconda3
第1步安装好ubuntu20.04环境后,我们首先要安装Anaconda3,具体安装步骤如下:
(1)下载Anaconda3-2021.11-Linux-x86_64.sh文件,可以进入百度网盘下载,下载路径如下:
链接:https://pan.baidu.com/s/1egRszYlWcpwhmt3-VEH3lA 提取码:bg0c
(2)加入下载后将该文件放在了public文件夹下面,然后我们进入该文件夹打开终端,如下图所示:

然后在终端输入su进入根目录,在根目录下运行bash Anaconda3-2021.11-Linux-x86_64.sh即可,运行完后关闭终端,然后再次打开终端,终端运行conda-env list看是否安装好了Anaconda3。
3.rknn-toolkit2文件的搭建
第2步搭建好了Anaconda3,我们接下来就可以搭建rknn-toolkit2文件了,具体步骤如下:
(1)下载rknn-toolkit2文件,可以通过百度网盘下载,下载路径如下:
链接:https://pan.baidu.com/s/1QzyAG23WMMjmOLDW3J8ZGA 提取码:vs3c,下载后将该文件放在你要放的文件夹下面,我放在了home/下面。
新建一个rknn环境如下(这里一定是python3.8,其他版本容易转换出错):
conda create -n rknn python=3.8
然后激活该环境
conda activate rknn
进入home/rknn-toolkit2-master/doc/路径,该路径有一个requirements_cp38-1.5.2.txt文件,然后终端运行代码:
pip install -r requirements_cp38-1.5.2.txt -i https://mirror.baidu.com/pypi/simple
返回上一级目录,然后进入packages目录,安装rknn_toolkit2
pip install rknn_toolkit2-1.5.2+b642f30c-cp38-cp38-linux_x86_64.whl
完成后,输入命令 python
from rknn.api import RKNN
运行以上命令,若不报错,则说明已经成功安装了rknn-toolkit2,然后退出python,如下图:

把yolov5生成的onnx文件放到examples/onnx/yolov5文件夹下,然后终端进入该文件夹,再打开该文件夹的test.py文件,对里面的内容进行修改,具体修改如下:

上图的第11行是我们要转换的onnx文件的路径(相对路径或者绝对路径都可以)。
第12行是转换后的rknn文件的路径及文件名称。
第13行是我们要检测的图片的路径,第14行是数据的路径,第22行是我们的要检测的目标名称。这里用了官方的pt文件,所以写了80个类,后面可以根据我们要检测的实际的类进行修改。

然后再对第241行的target_platform修改为rk3588(因为我是要将该模型放在rk3588系统里),如果写成其他,转换后的rknn放到rk3588系统会报错。
最后运行test.py文件即可,成功后在该文件夹下会生成对应的rknn文件。注意:一般转移这个文件需要解除权限。我们在终端运行以下代码解除文件权限即可。
chmod -R 777 文件名
至此,我们的onnx转换为rknn文件完毕!
接下来是将rknn文件部署在rk3588系统里。
三、rk3588部署rknn文件
在第二步生成rknn文件后,接下来是如何部署在rk3588系统里,具体步骤如下:
首先在rk3588系统的ubuntu20.04环境下运行
git clone https://github.com/rockchip-linux/rknpu2.git
然后进入yolov5目录运行
cd /home/ptay/rknpu2-master/examples/rknn_yolov5_demo
再修改include文件中的头文件postprocess.h
#define OBJ_CLASS_NUM 2 #这里的数字修改为数据集的类的个数
修改model目录下的coco_80_labels_list.txt文件,改为自己的类并保存(比如我要检测的类为person,moto)
person
moto
将我们在ubuntu20.04虚拟环境下转换后的rknn文件放在rknpu2/examples/rknn_yolov5_demo/model/RK3588/目录下,然后终端切换到rknpu2/examples/rknn_yolov5_demo/运行以下代码:
bash ./build-linux_RK3588.sh
然后会在该文件下生成install目录(更新该文件夹即可看到include文件夹).
cd install/rknn_yolov5_demo_linux
在model目录下放入需要推理的图片
运行
./rknn_yolov5_demo ./model/RK3588/best.rknn ./model/bus.jpg
运行后即可获得需要的结果。
当然,最后一步可以通过python运行,如果用python 运行,我们需要写一个demo.py文件如下:
import cv2
import subprocessp = subprocess.Popen(['./rknn_yolov5_demo', './model/RK3588/best.rknn', './model/bus.jpg'])
p.wait()
picDetected = cv2.imread('out.jpg')
# cv2.imshow("ss",picDetected)
# cv2.waitKey(0)
然后在该文件夹运行
python demo.py
在同级文件夹下会生成一个out.jpg图片,该图片就是用rknn模型检测的图片结果。到这里,我们就完成了从pt文件到rk3588的模型部署了。
完成以上环境部署后,后面多个模型时,可以根据实际情况进行嵌套检测,就简单了。
相关文章:
1.rk3588的yolov5运行:pt_onnx_rknn转换及rknn在rk3588系统python运行
自己有点笨,查资料查了一周才完美的实现了yolov5在rk3588环境下的运行,在这里写具体步骤希望大家少走弯路。具体步骤如下: 一、yolov5的原代码下载及pt文件转换为onnx文件 1.yolov5的原代码下载及环境搭建 在这里一定要下载正确版本的源代码…...
适用于全部安卓手机的 5 大免费 Android 数据恢复
您是否面临这样一种情况,即在Android设备上丢失了一些重要文件,但不知道应该选择哪种Android数据恢复来取回它们? 如果您以前从未备份过Android数据,则很难解决问题。 本文将介绍排名前5位的免费Android数据恢复软件。 您可以获…...
【案例分享】BenchmarkSQL 5.0 压测 openGauss 5.0.0
一、前言 本次BenchmarkSQL 压测openGauss仅作为学习使用压测工具测试tpcc为目的,并不代表数据库性能如本次压测所得数据。实际生产性能压测,还需结合服务器软硬件配置、数据库性能参数调优、BenchmarkSQL 配置文件参数相结合,是一个复杂的过…...
Linux之 4 种休眠模式
目录 1. Linux之 4 种休眠模式 1. Linux之 4 种休眠模式 # echo standby >/sys/power/state //CPU和RAM在运行 # echo mem > /sys/power/state //挂起到内存(待机),关闭硬 盘、外设等设备 # echo disk > /sys/power/state //挂起到硬盘(休眠),关闭硬盘、外设等设备&…...
homeassiant主题
下载主题 https://github.com/maartenpaauw/home-assistant-community-themes.git 使用file editor到homeassiant路径下,新建文件夹themes文件夹,用terminal新建也可以。 使用file editor上传文件 使用Terminal解压 mkdir themes unzip home-assistan…...
《2020年最新面经》—字节跳动Java社招面试题
文章目录 前言:一面:01、Java基础知识答疑,简单概述一下?02、倒排索引了解吗?使用Java语言怎么实现倒排?03、详细讲解一下redis里面的哈希表,常用的Redis哈希表命名有哪些,举例说明其…...
2.3IP详解及配置
2.3IP详解及配置 一、ip地址组成 IP地址由4部分数字组成,每部分数字对应于8位二进制数字,各部分之间用小数点分开 这是点分 2进制 如果换算为10进制我们称为点分10进制. 每个ip地址由两部分组成网络地址(NetID)和主z机地址(HostID).网络地址表示其属于…...
Python程序打包指南:手把手教你一步步完成
最近感兴趣想将开发的项目转成Package,研究了一下相关文章,并且自己跑通了,走了一下弯路,这里记录一下如何打包一个简单的Python项目,展示如何添加必要的文件和结构来创建包,如何构建包,以及如何…...
Linux yum 使用时提示 获取 GPG 密钥失败Couldn‘t open file RPM-GPG-KEY-EPEL-7
资料 错误提示: no crontab for root - using an empty one 888 原因剖析: 第一次使用crontab -e 命令时会让我们选择编辑器,很多人会不小心选择默认的nano(不好用),或则提示no crontab for root - usin…...
OpenGL_Learn13(材质)
1. 材质 cube.vs #version 330 core layout (location 0) in vec3 aPos; layout (location 0 ) in vec3 aNormal;out vec3 FragPos; out vec3 Normal;uniform mat4 model; uniform mat4 view; uniform mat4 projection;void main() {FragPosvec3(model*vec4(aPos,1.0));Norma…...
buildadmin+tp8表格操作(1)----表头上方添加按钮和自定义按钮
buildAdmin 的表头上添加一些按钮,并实现功能 添加按钮 <template><!-- buttons 属性定义了 TableHeader 本身支持的顶部按钮,仅需传递按钮名即可 --><!-- 这里的框架自带的 顶部按钮 分别有 刷新 , 添加, 编辑&…...
MySQL 定时计划任务 事件的使用
目录 查看事件是否开启 开启事件 1)通过设置全局参数修改 2)更改配置文件 MySQL如何创建并执行事件? 例 1 MySQL查看事件状态信息 MySQL修改和删除事件 例 1 例 2 删除事件 例 3 在数据库管理中,经常要周期性的执行某…...
C++构造函数 拷贝构造函数 括号法显示法隐式转换法实现类
一.无参构造 & 有参构造 & 拷贝构造函数 拷贝的是自己所属的类,也就是克隆自己。 所以传参要穿自己的类名。 克隆归克隆,但是不能把本身给改了,所以参数前要加const。class Person { public:int age;public:Person(){cout<<&q…...
FreeRTOS中的内存分配策略
FreeRTOS为内存管理提供了几种不同的策略,分别由heap_1.c至heap_5.c实现。以下是每种策略: heap_1.c: 最简单的策略。只允许一次性的内存分配。不允许内存释放。对于只分配内存但不释放的系统特别有用,如仅在启动时分配任务和队列的系统。内存…...
HP惠普光影精灵7笔记本Victus by HP 16.1英寸游戏本16-d0000原装出厂Windows11.21H2预装OEM系统
下载链接:https://pan.baidu.com/s/1LGNeQR1AF1XBJb5kfZca5w?pwdhwk6 提取码:hwk6 可适用的型号: 16-d0111tx,16-d0112tx,16-d0125tx,16-d0127tx,16-d0128tx,16-d0129tx&#…...
组合模式 rust和java的实现
文章目录 组合模式介绍实现javarsut 组合模式 组合模式(Composite Pattern),又叫部分整体模式,是用于把一组相似的对象当作一个单一的对象。组合模式依据树形结构来组合对象,用来表示部分以及整体层次。这种类型的设计…...
大数据基础设施搭建 - MySQL
文章目录 一、检查是否安装过MySQL二、上传安装包三、安装MySQL3.1 安装mysql依赖3.2 安装mysql-client3.3 安装mysql-server 四、启动MySQL五、配置MySQL5.1 修改密码(1)查看密码(2)登陆(3)设置复杂密码&a…...
二叉树递归遍历
能帮到你的话,就给个赞吧 😘 二叉树遍历算法 指遍历一遍二叉树就能得到答案 什么是二叉树遍历 二叉树遍历 前中后序遍历 递归遍历 3种时间节点 递归遍历会依次遍历到每个节点。 而前中后序则是在递归遍历的基础上选择操作发生的时间。 递归遍历 …...
【ArcGIS Pro二次开发】:CC工具箱1.1.1更新_免费_安装即可用
CC工具箱1.1.1更新【2023.11.15】 使用环境要求:ArcGIS Pro 3.0 一、下载链接 工具安装文件及使用文档: https://pan.baidu.com/s/1OJmO6IPtMfX_vob3bMtvEg?pwduh5rhttps://pan.baidu.com/s/1OJmO6IPtMfX_vob3bMtvEg?pwduh5r 二、使用方法 1、在下…...
Dubbo的优雅下线原理分析
文/朱季谦 Dubbo如何实现优雅下线? 这个问题困扰了我一阵,既然有优雅下线这种说法,那么,是否有非优雅下线的说法呢? 这,还真有。 可以从linux进程关闭说起,其实,我们经常使用到杀…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
Oracle查询表空间大小
1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...
抖音增长新引擎:品融电商,一站式全案代运营领跑者
抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...
dify打造数据可视化图表
一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...
html-<abbr> 缩写或首字母缩略词
定义与作用 <abbr> 标签用于表示缩写或首字母缩略词,它可以帮助用户更好地理解缩写的含义,尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时,会显示一个提示框。 示例&#x…...
SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)
上一章用到了V2 的概念,其实 Fiori当中还有 V4,咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务),代理中间件(ui5-middleware-simpleproxy)-CSDN博客…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
BLEU评分:机器翻译质量评估的黄金标准
BLEU评分:机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域,衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标,自2002年由IBM的Kishore Papineni等人提出以来,…...
Python实现简单音频数据压缩与解压算法
Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中,压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言,提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...
