长短期记忆(LSTM)与RNN的比较:突破性的序列训练技术
长短期记忆(Long short-term memory, LSTM)是一种特殊的RNN,主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。简单来说,就是相比普通的RNN,LSTM能够在更长的序列中有更好的表现。
Why
LSTM提出的动机是为了解决「长期依赖问题」。
长期依赖(Long Term Dependencies)
在深度学习领域中(尤其是RNN),“长期依赖“问题是普遍存在的。长期依赖产生的原因是当神经网络的节点经过许多阶段的计算后,之前比较长的时间片的特征已经被覆盖,例如下面例子
eg1: The cat, which already ate a bunch of food, was full.
| | | | | | | | | | |
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
eg2: The cats, which already ate a bunch of food, were full.
| | | | | | | | | | |
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
我们想预测'full'之前系动词的单复数情况,显然full是取决于第二个单词’cat‘的单复数情况,而非其前面的单词food。根据RNN的结构,随着数据时间片的增加,RNN丧失了学习连接如此远的信息的能力。
LSTM vs. RNN
相比RNN只有一个传递状态 ,LSTM有两个传输状态,一个 (cell state),和一个 (hidden state)。(Tips:RNN中的 对于LSTM中的 )
其中对于传递下去的 改变得很慢,通常输出的 是上一个状态传过来的 加上一些数值。
而 则在不同节点下往往会有很大的区别。
Model 详解
状态计算
首先使用LSTM的当前输入 和上一个状态传递下来的 拼接训练得到四个状态。
其中, , , 是由拼接向量乘以权重矩阵之后,再通过一个 激活函数转换成0到1之间的数值,来作为一种门控状态。而 则是将结果通过一个 激活函数将转换成-1到1之间的值(这里使用 是因为这里是将其做为输入数据,而不是门控信号)。
计算过程
⊙ 是Hadamard Product,也就是操作矩阵中对应的元素相乘,因此要求两个相乘矩阵是同型的。 ⊕ 则代表进行矩阵加法。
LSTM内部主要有三个阶段:
-
「忘记阶段」。这个阶段主要是对上一个节点传进来的输入进行 「选择性」忘记。简单来说就是会 “忘记不重要的,记住重要的”。
具体来说是通过计算得到的 (f表示forget)来作为忘记门控,来控制上一个状态的 哪些需要留哪些需要忘。
-
「选择记忆阶段」。这个阶段将这个阶段的输入有选择性地进行“记忆”。主要是会对输入 进行选择记忆。哪些重要则着重记录下来,哪些不重要,则少记一些。当前的输入内容由前面计算得到的 表示。而选择的门控信号则是由 (i代表information)来进行控制。
❝将上面两步得到的结果相加,即可得到传输给下一个状态的 。也就是上图中的第一个公式。
❞
-
「输出阶段」。这个阶段将决定哪些将会被当成当前状态的输出。主要是通过 来进行控制的。并且还对上一阶段得到的 进行了放缩(通过一个tanh激活函数进行变化)。
与普通RNN类似,输出 往往最终也是通过 变化得到。
Code
现在,我们从零开始实现长短期记忆网络。 与 8.5节中的实验相同, 我们首先加载时光机器数据集。
import torch
from torch import nn
from d2l import torch as d2l
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
-
初始化模型参数
定义和初始化模型参数。 如前所述,超参数num_hiddens定义隐藏单元的数量。 我们按照标准差0.01的高斯分布初始化权重,并将偏置项设为0。
def get_lstm_params(vocab_size, num_hiddens, device):
num_inputs = num_outputs = vocab_size
def normal(shape):
return torch.randn(size=shape, device=device)*0.01
def three():
return (normal((num_inputs, num_hiddens)),
normal((num_hiddens, num_hiddens)),
torch.zeros(num_hiddens, device=device))
W_xi, W_hi, b_i = three() # 输入门参数
W_xf, W_hf, b_f = three() # 遗忘门参数
W_xo, W_ho, b_o = three() # 输出门参数
W_xc, W_hc, b_c = three() # 候选记忆元参数
# 输出层参数
W_hq = normal((num_hiddens, num_outputs))
b_q = torch.zeros(num_outputs, device=device)
# 附加梯度
params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc,
b_c, W_hq, b_q]
for param in params:
param.requires_grad_(True)
return params
-
定义模型
def init_lstm_state(batch_size, num_hiddens, device):
return (torch.zeros((batch_size, num_hiddens), device=device),
torch.zeros((batch_size, num_hiddens), device=device))
def lstm(inputs, state, params):
[W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c,
W_hq, b_q] = params
(H, C) = state
outputs = []
for X in inputs:
I = torch.sigmoid((X @ W_xi) + (H @ W_hi) + b_i)
F = torch.sigmoid((X @ W_xf) + (H @ W_hf) + b_f)
O = torch.sigmoid((X @ W_xo) + (H @ W_ho) + b_o)
C_tilda = torch.tanh((X @ W_xc) + (H @ W_hc) + b_c)
C = F * C + I * C_tilda
H = O * torch.tanh(C)
Y = (H @ W_hq) + b_q
outputs.append(Y)
return torch.cat(outputs, dim=0), (H, C)
-
训练和预测
vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_lstm_params,
init_lstm_state, lstm)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
# perplexity 1.3, 17736.0 tokens/sec on cuda:0
# time traveller for so it will leong go it we melenot ir cove i s
# traveller care be can so i ngrecpely as along the time dime
总结
-
长短期记忆网络有三种类型的门:输入门、遗忘门和输出门。 -
长短期记忆网络的隐藏层输出包括“隐状态”和“记忆元”。只有隐状态会传递到输出层,而记忆元完全属于内部信息。 -
长短期记忆网络可以缓解梯度消失和梯度爆炸。
Ref
-
https://zhuanlan.zhihu.com/p/32085405 -
https://zhuanlan.zhihu.com/p/42717426 -
https://zh.d2l.ai/chapter_recurrent-modern/lstm.html
本文由 mdnice 多平台发布
相关文章:
长短期记忆(LSTM)与RNN的比较:突破性的序列训练技术
长短期记忆(Long short-term memory, LSTM)是一种特殊的RNN,主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。简单来说,就是相比普通的RNN,LSTM能够在更长的序列中有更好的表现。 Why LSTM提出的动机是为了解…...
Swift 如何打造兼容新老系统的字符串分割(split)方法
0. 概览 在 Swift 的开发中,我们经常要与字符串打交道。其中一个常见的操作就是用特定的“分隔符”来分割字符串,这里分隔符可能不仅仅是字符,而是多字符组成的字符串。 从 iOS 16 开始, 新增了对应的方法来专注此事。不过&am…...
JVM面试必备
目录 JVM三大问题 一、JVM内存区域划分 编辑 二、JVM类加载机制 双亲委派模型(常考) 类加载的格式,类卸载 三、垃圾回收(GC) 具体垃圾回收GC步骤 1.判定对象是否为垃圾 方案1:引用计数 方案2:可达性分析 2.释放对象的…...
战神传奇【我本沉默精修版】win服务端+双端+充值后台+架设教程
搭建资源下载:战神传奇【我本沉默精修版】win服务端双端充值后台架设教程-海盗空间...
安卓手机投屏到电视,跨品牌、跨地域同样可以实现!
在手机网页上看到的视频,也可以投屏到电视上看! 长时间使用手机,难免脖子会酸。这时候,如果你将手机屏幕投屏到大电视屏幕,可以减缓脖子的压力,而且大屏的视觉体验更爽。 假设你有一台安卓手机,…...
python变量名解析总结
1 python变量名解析总结 点号和无点号变量名,用不同的处理方式。 (1) 无点号的变量名,比如X,使用的是作用域。 (2) 有点号的变量名,比如obj.X,使用对象的命名空间。 …...
端口号大揭秘:网络世界的“门牌号”有多牛?
大家好,今天我们来聊一聊网络中的端口号。如果你以为端口号只是冷冰冰的数字,那你就大错特错了。端口号,这些看似枯燥的数字背后,隐藏着一个个生动的故事。 目录 大家好,今天我们来聊一聊网络中的端口号。如果你以为端…...
vue解除数据双向绑定
let obj JSON.parse(JSON.stringify(data));例如,table列表中,点击编辑时,可对val进行如上操作来解除双向绑定...
组件插槽,生命周期,轮播图组件的封装,自定义指令的封装等详解以及axios的卖座案例
3.组件插槽 3-1组件插槽 注意 插槽内容可以访问到父组件的数据作用域,因为插槽内容本身就是在父组件模版中定义的 插槽内容无法访问子组件的数据.vue模版中的表达式只能访问其定义时所处的作用域,这和JavaScript的词法作用域是一致的,换言之: 父组件模版的表达式只能访问父组…...
小美的树上染色
美团2024届秋招笔试第一场编程真题 先提一个小知识:题目中凡是提到树结构都要使用图的存储方式,只有二叉树例外。 分析:在树结构中,孩子和父节点是相邻节点,而父节点可能有多个孩子节点。在染色的过程中,…...
1.rk3588的yolov5运行:pt_onnx_rknn转换及rknn在rk3588系统python运行
自己有点笨,查资料查了一周才完美的实现了yolov5在rk3588环境下的运行,在这里写具体步骤希望大家少走弯路。具体步骤如下: 一、yolov5的原代码下载及pt文件转换为onnx文件 1.yolov5的原代码下载及环境搭建 在这里一定要下载正确版本的源代码…...
适用于全部安卓手机的 5 大免费 Android 数据恢复
您是否面临这样一种情况,即在Android设备上丢失了一些重要文件,但不知道应该选择哪种Android数据恢复来取回它们? 如果您以前从未备份过Android数据,则很难解决问题。 本文将介绍排名前5位的免费Android数据恢复软件。 您可以获…...
【案例分享】BenchmarkSQL 5.0 压测 openGauss 5.0.0
一、前言 本次BenchmarkSQL 压测openGauss仅作为学习使用压测工具测试tpcc为目的,并不代表数据库性能如本次压测所得数据。实际生产性能压测,还需结合服务器软硬件配置、数据库性能参数调优、BenchmarkSQL 配置文件参数相结合,是一个复杂的过…...
Linux之 4 种休眠模式
目录 1. Linux之 4 种休眠模式 1. Linux之 4 种休眠模式 # echo standby >/sys/power/state //CPU和RAM在运行 # echo mem > /sys/power/state //挂起到内存(待机),关闭硬 盘、外设等设备 # echo disk > /sys/power/state //挂起到硬盘(休眠),关闭硬盘、外设等设备&…...
homeassiant主题
下载主题 https://github.com/maartenpaauw/home-assistant-community-themes.git 使用file editor到homeassiant路径下,新建文件夹themes文件夹,用terminal新建也可以。 使用file editor上传文件 使用Terminal解压 mkdir themes unzip home-assistan…...
《2020年最新面经》—字节跳动Java社招面试题
文章目录 前言:一面:01、Java基础知识答疑,简单概述一下?02、倒排索引了解吗?使用Java语言怎么实现倒排?03、详细讲解一下redis里面的哈希表,常用的Redis哈希表命名有哪些,举例说明其…...
2.3IP详解及配置
2.3IP详解及配置 一、ip地址组成 IP地址由4部分数字组成,每部分数字对应于8位二进制数字,各部分之间用小数点分开 这是点分 2进制 如果换算为10进制我们称为点分10进制. 每个ip地址由两部分组成网络地址(NetID)和主z机地址(HostID).网络地址表示其属于…...
Python程序打包指南:手把手教你一步步完成
最近感兴趣想将开发的项目转成Package,研究了一下相关文章,并且自己跑通了,走了一下弯路,这里记录一下如何打包一个简单的Python项目,展示如何添加必要的文件和结构来创建包,如何构建包,以及如何…...
Linux yum 使用时提示 获取 GPG 密钥失败Couldn‘t open file RPM-GPG-KEY-EPEL-7
资料 错误提示: no crontab for root - using an empty one 888 原因剖析: 第一次使用crontab -e 命令时会让我们选择编辑器,很多人会不小心选择默认的nano(不好用),或则提示no crontab for root - usin…...
OpenGL_Learn13(材质)
1. 材质 cube.vs #version 330 core layout (location 0) in vec3 aPos; layout (location 0 ) in vec3 aNormal;out vec3 FragPos; out vec3 Normal;uniform mat4 model; uniform mat4 view; uniform mat4 projection;void main() {FragPosvec3(model*vec4(aPos,1.0));Norma…...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...
【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...
spring:实例工厂方法获取bean
spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂ÿ…...
vue3 定时器-定义全局方法 vue+ts
1.创建ts文件 路径:src/utils/timer.ts 完整代码: import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...
MySQL 8.0 事务全面讲解
以下是一个结合两次回答的 MySQL 8.0 事务全面讲解,涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容,并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念(ACID) 事务是…...
