当前位置: 首页 > news >正文

Pandas分组聚合_Python数据分析与可视化

Pandas分组聚合

  • 分组
    • 单列和多列分组
    • Series 系列分组
    • 通过数据类型或者字典分组
    • 获取单个分组
    • 对分组进行迭代
  • 聚合
    • 应用单个聚合函数
    • 应用多个聚合函数
    • 自定义函数传入 agg() 中
    • 对不同的列使用不同的聚合函数

分组聚合的流程主要有三步:

  • 分割步骤将 DataFrame 按照指定的键分割成若干组;
  • 应用步骤对每个组应用函数,通常是累计、转换或过滤函数;
  • 组合步骤将每一组的结果合并成一个输出数组。

在这里插入图片描述

分组

通常我们将数据分成多个集合的操作称之为分组,Pandas 中使用 groupby() 函数来实现分组操作。

单列和多列分组

对分组后的子集进行数值运算时,不是数值的列会自动过滤

import pandas as pd
data = {'A': [1, 2, 2, 3, 2, 4],'B': [2014, 2015, 2014, 2014, 2015, 2017],'C': ["a", "b", "c", "d", "e", "f"],'D': [0.5, 0.9, 2.1, 1.5, 0.5, 0.1]}
df = pd.DataFrame(data)
df.groupby("B")   #单列分组  返回的是一个groupby对象
df.groupby(["B","C"])    #多列分组

Series 系列分组

选取数据帧中的一列作为 index 进行分组:

df["A"].groupby(df["B"])   #df的 A 列根据 B 进行分组

通过数据类型或者字典分组

数据类型分组:

df.groupby(df.dtypes,axis=1)   # axis=1表示按列分组,以数据类型为列名

传入字典分组:

dic = {"A": "number", "B": "number", "C": "str", "D": "number"}
df.groupby(dic, axis=1)   #按列分组,列名是字典的值

获取单个分组

使用 get_group() 方法可以选择一个组。

df.groupby("A").get_group(2)
Output:A     B  C    D
1  2  2015  b  0.9
2  2  2014  c  2.1
4  2  2015  e  0.5

对分组进行迭代

GroupBy 对象支持迭代,可以产生一组二元元组(由分组名和数据块组成)。

for name,data in df.groupby("A"):print(name)print(data)
Output:
1A     B  C    D
0  1  2014  a  0.5
2A     B  C    D
1  2  2015  b  0.9
2  2  2014  c  2.1
4  2  2015  e  0.5
3A     B  C    D
3  3  2014  d  1.5
4A     B  C    D
5  4  2017  f  0.1

聚合

聚合函数为每个组返回单个聚合值。当创建了 groupby 对象,就可以对分组数据执行多个聚合操作。比较常用的是通过聚合函数或等效的 agg 方法聚合。


常用的聚合函数:
在这里插入图片描述

应用单个聚合函数

对分组后的子集进行数值运算时,不是数值的列会自动过滤

import pandas as pd
import numpy as np
data = {'A': [1, 2, 2, 3, 2, 4],'B': [2014, 2015, 2014, 2014, 2015, 2017],'C': ["a", "b", "c", "d", "e", "f"],'D': [0.5, 0.9, 2.1, 1.5, 0.5, 0.1]}
df = pd.DataFrame(data)
df.groupby("B").sum()       #对分组进行求和

应用多个聚合函数

df.groupby("B").agg([np.sum,np.mean,np.std])

自定义函数传入 agg() 中

def result(df):return df.max() - df.min()
df.groupby("B").agg(result)  #求每一组最大值与最小值的差

对不同的列使用不同的聚合函数

mapping = {"A":np.sum,"B":np.mean}
df.groupby("C").agg(mapping)

相关文章:

Pandas分组聚合_Python数据分析与可视化

Pandas分组聚合 分组单列和多列分组Series 系列分组通过数据类型或者字典分组获取单个分组对分组进行迭代 聚合应用单个聚合函数应用多个聚合函数自定义函数传入 agg() 中对不同的列使用不同的聚合函数 分组聚合的流程主要有三步: 分割步骤将 DataFrame 按照指定的…...

VMware17虚拟机Linux安装教程(详解附图,带VMware Workstation 17 Pro安装)

一、安装 VMware 附官方下载链接(VM 17 pro):https://download3.vmware.com/software/WKST-1701-WIN/VMware-workstation-full-17.0.1-21139696.exe 打开下载好的VMware Workstation 17 Pro安装包; 点击下一步; 勾选我…...

基于SDN技术构建多平面业务承载网络

随着企业数字化的浪潮席卷各个行业,传统网络架构面临着更为复杂和多样化的挑战。企业正在寻找一种全面适应数字化需求的网络解决方案。随着软件定义网络(SDN)的发展,“多业务SDN一张网”解决方案为企业提供了一种全新的网络架构&a…...

关于卓越服务的调研报告

NetSuite知识会发起的本次调研从2023年11月2日开始,到11月12日结束。16日已向参与调研的朋友邮件回复,感谢您的付出!今朝分享此报告,各位同学参考。 调研问题与反馈总结 问题1:您能想到哪些服务组织能够提供高满意度&…...

ubuntu22.04换源

1、系统信息 lsb_release -a No LSB modules are available. Distributor ID: Ubuntu Description: Ubuntu 22.04.3 LTS Release: 22.04 Codename: jammy2、进入 /etc/apt/ 目录: cd /etc/apt/ 3、备份默认源文件 sudo cp sources.list sources.list_bak 4、编…...

03. Python中的语句

1、前言 在《Python基础数据类型》一文中,我们了解了Python中的基础数据类型,今天我们继续了解下Python中的语句和函数。 2、语句 在Python中常用的语句可以大致分为两类:条件语句、循环语句。 2.1、条件语句 条件语句就是我们编码时常见…...

Linux CentOS7 添加网卡

一台主机中安装多块网卡,有许多优势。可以实现多项功能。 为了学习网卡参数的设置,可以为主机添加多块网卡。与添加磁盘一样,要在VMware中设置。利用图形化方式或命令行查看或设置网卡。本文仅初步讨论添加、查看与删除网卡,有关…...

2311rust,到54版本更新

1.50.0稳定版 常量泛型数组索引 继续向稳定的常量泛型迈进,此版本为[T;N]数组,添加了ops::Index和IndexMut的实现. fn second<C>(container: &C) -> &C::Output whereC: std::ops::Index<usize> ?Sized, {&container[1] } fn main() {let arra…...

【linux】补充:高效处理文本的命令学习(tr、uniq、sort、cut)

目录 一、tr——转换、压缩、删除 1、tr -s “分隔符” &#xff08;指定压缩连续的内容&#xff09; 2、tr -d 想要删除的东西 ​编辑 3、tr -t 内容1 内容2 将内容1全部转换为内容2&#xff08;字符数需要一一对应&#xff09; 二、cut——快速剪裁命令 三、uniq——去…...

Redis篇---第七篇

系列文章目录 文章目录 系列文章目录前言一、是否使用过 Redis Cluster 集群,集群的原理是什么?二、 Redis Cluster 集群方案什么情况下会导致整个集群不可用?三、Redis 集群架构模式有哪几种?前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分…...

Shell脚本:Linux Shell脚本学习指南(第一部分Shell基础)一

你好&#xff0c;欢迎来到「Linux Shell脚本」学习专题&#xff0c;你将享受到免费的 Shell 编程资料&#xff0c;以及很棒的浏览体验。 这套 Shell 脚本学习指南针对初学者编写&#xff0c;它通俗易懂&#xff0c;深入浅出&#xff0c;不仅讲解了基本知识&#xff0c;还深入底…...

长短期记忆(LSTM)与RNN的比较:突破性的序列训练技术

长短期记忆&#xff08;Long short-term memory, LSTM&#xff09;是一种特殊的RNN&#xff0c;主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。简单来说&#xff0c;就是相比普通的RNN&#xff0c;LSTM能够在更长的序列中有更好的表现。 Why LSTM提出的动机是为了解…...

Swift 如何打造兼容新老系统的字符串分割(split)方法

0. 概览 在 Swift 的开发中&#xff0c;我们经常要与字符串打交道。其中一个常见的操作就是用特定的“分隔符”来分割字符串&#xff0c;这里分隔符可能不仅仅是字符&#xff0c;而是多字符组成的字符串。 从 iOS 16 开始&#xff0c; 新增了对应的方法来专注此事。不过&am…...

JVM面试必备

目录 JVM三大问题 一、JVM内存区域划分 ​编辑 二、JVM类加载机制 双亲委派模型&#xff08;常考) 类加载的格式&#xff0c;类卸载 三、垃圾回收&#xff08;GC) 具体垃圾回收GC步骤 1.判定对象是否为垃圾 方案1:引用计数 方案2&#xff1a;可达性分析 2.释放对象的…...

战神传奇【我本沉默精修版】win服务端+双端+充值后台+架设教程

搭建资源下载:战神传奇【我本沉默精修版】win服务端双端充值后台架设教程-海盗空间...

安卓手机投屏到电视,跨品牌、跨地域同样可以实现!

在手机网页上看到的视频&#xff0c;也可以投屏到电视上看&#xff01; 长时间使用手机&#xff0c;难免脖子会酸。这时候&#xff0c;如果你将手机屏幕投屏到大电视屏幕&#xff0c;可以减缓脖子的压力&#xff0c;而且大屏的视觉体验更爽。 假设你有一台安卓手机&#xff0c;…...

python变量名解析总结

1 python变量名解析总结 点号和无点号变量名&#xff0c;用不同的处理方式。 &#xff08;1&#xff09; 无点号的变量名&#xff0c;比如X&#xff0c;使用的是作用域。 &#xff08;2&#xff09; 有点号的变量名&#xff0c;比如obj.X&#xff0c;使用对象的命名空间。 …...

端口号大揭秘:网络世界的“门牌号”有多牛?

大家好&#xff0c;今天我们来聊一聊网络中的端口号。如果你以为端口号只是冷冰冰的数字&#xff0c;那你就大错特错了。端口号&#xff0c;这些看似枯燥的数字背后&#xff0c;隐藏着一个个生动的故事。 目录 大家好&#xff0c;今天我们来聊一聊网络中的端口号。如果你以为端…...

vue解除数据双向绑定

let obj JSON.parse(JSON.stringify(data));例如&#xff0c;table列表中&#xff0c;点击编辑时&#xff0c;可对val进行如上操作来解除双向绑定...

组件插槽,生命周期,轮播图组件的封装,自定义指令的封装等详解以及axios的卖座案例

3.组件插槽 3-1组件插槽 注意 插槽内容可以访问到父组件的数据作用域,因为插槽内容本身就是在父组件模版中定义的 插槽内容无法访问子组件的数据.vue模版中的表达式只能访问其定义时所处的作用域,这和JavaScript的词法作用域是一致的,换言之: 父组件模版的表达式只能访问父组…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

适应性Java用于现代 API:REST、GraphQL 和事件驱动

在快速发展的软件开发领域&#xff0c;REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名&#xff0c;不断适应这些现代范式的需求。随着不断发展的生态系统&#xff0c;Java 在现代 API 方…...

「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案

在移动互联网营销竞争白热化的当下&#xff0c;推客小程序系统凭借其裂变传播、精准营销等特性&#xff0c;成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径&#xff0c;助力开发者打造具有市场竞争力的营销工具。​ 一、系统核心功能架构&…...