当前位置: 首页 > news >正文

核—幂零分解

若向量空间 V \mathcal V V存在子空间 X \mathcal X X Y \mathcal Y Y,当
X + Y = V X ∩ Y = 0 \mathcal {X\text{+}Y\text{=}V}\\ \mathcal {X}\cap \mathcal {Y}=0 X+Y=VXY=0
时称子空间 X \mathcal X X Y \mathcal Y Y是完备的,其中记为 X ⊕ Y = V \mathcal X \oplus \mathcal Y = \mathcal V XY=V

若存在 X ⊕ Y = V \mathcal X \oplus \mathcal Y = \mathcal V XY=V, 对于 x ∈ X , y ∈ Y , v ∈ V x\in \mathcal X,y \in \mathcal Y,v \in \mathcal V xX,yY,vV,满足 v = x + y v=x+y v=x+y,则向量 x x x被称为向量 v v v沿着 Y \mathcal Y Y X \mathcal X X 空间的投影,向量 y y y被称为向量 v v v沿着 X \mathcal X X Y \mathcal Y Y 空间的投影,若存在 P v = x Pv=x Pv=x P P P被称为沿着 Y \mathcal Y Y X \mathcal X X 空间的投影算子,其中

  • P 2 = P P^2=P P2=P
  • 1 − P 1-P 1P沿着 X \mathcal X X Y \mathcal Y Y 空间的投影算子
  • R ( P ) = N ( 1 − P ) = X R(P)=N(1-P)=\mathcal X R(P)=N(1P)=X
  • N ( P ) = R ( 1 − P ) = Y N(P)=R(1-P)=\mathcal Y N(P)=R(1P)=Y

V = R n V=\mathfrak R^n V=Rn,则 P [ X ∣ Y ] = [ X ∣ 0 ] P[\mathbf X|\mathbf Y]=[\mathbf X|\mathbf 0] P[XY]=[X0],即 P = [ X ∣ 0 ] [ X ∣ Y ] − 1 = [ X ∣ 0 ] ( I 0 0 0 ) [ X ∣ Y ] − 1 P=[\mathbf X|\mathbf 0][\mathbf X|\mathbf Y]^{-1}=[\mathbf X|\mathbf 0]\begin{pmatrix}\mathbf I&\mathbf0\\\mathbf 0&\mathbf 0\end{pmatrix}[\mathbf X|\mathbf Y]^{-1} P=[X0][XY]1=[X0](I000)[XY]1,其中 X , Y \mathbf X,\mathbf Y X,Y分别表示 X , Y \mathcal X ,\mathcal Y X,Y的一组基

值域零空间分解

若存在一个k,满足 rank ( A k ) = rank ( A k + 1 ) \text{rank}(A^k)=\text{rank}(A^{k+1}) rank(Ak)=rank(Ak+1),则将最小的那个k值称为index,其中非奇异矩阵的index为0

对于奇异矩阵 A n × n A_{n\times n} An×n,存在一个index k,使得$R(A^k)\oplus N(A^k)=\mathfrak R^n $

若存在一个矩阵 A k = 0 A^k=0 Ak=0,其中index(A)=0,则矩阵A被称为幂零矩阵

核—幂零分解

如果A是一个 n × n n\times n n×n 的index为k的奇异矩阵,其中 rank ( A k ) = r \text{rank}(A^k)=r rank(Ak)=r,则存在一个非奇异矩阵 Q Q Q, 满足
Q − 1 A Q = ( C r × r 0 0 N ) \left.\mathbf{Q}^{-1}\mathbf{A}\mathbf{Q}=\left(\begin{array}{cc}\mathbf{C}_{r\times r}&\mathbf{0}\\\mathbf{0}&\mathbf{N}\end{array}\right.\right) Q1AQ=(Cr×r00N)
其中 C C C是非奇异矩阵, N N N是index为k的幂零矩阵,其中 Q Q Q为矩阵 A k A^k Ak的值域空间和零空间的基的组合

若存在 A = Q ( C 0 0 N ) Q − 1 \left.\mathbf{A}=\mathbf{Q}\left(\begin{array}{ll}\mathbf{C}&0\\0&\mathbf{N}\end{array}\right.\right)\mathbf{Q}^{-1} A=Q(C00N)Q1,则 A D = Q ( C − 1 0 0 0 ) Q − 1 \left.\mathbf{A}^D=\mathbf{Q}\left(\begin{array}{ll}\mathbf{C}^{-1}&0\\0&0\end{array}\right.\right)\mathbf{Q}^{-1} AD=Q(C1000)Q1,其中 A D A^D AD被称为A的广义逆

对于矩阵 A = ( − 2 0 − 4 4 2 4 3 2 2 ) \left.\textbf{A}=\left(\begin{array}{rrr}-2&0&-4\\4&2&4\\3&2&2\end{array}\right.\right) A= 243022442 ,计算出 core-nilpoten 的分解形式,并给出对应的 Drazin 逆的形式。

直接计算可得 : r a n k ( A ) = 2 , r a n k ( A 2 ) = 1 , r a n k ( A 3 ) = 1 :\:rank(\mathbf{A})=2,\:rank(\mathbf{A^2})=1,\:rank(\mathbf{A^3})=1 :rank(A)=2,rank(A2)=1,rank(A3)=1, 由此可知 : i n d e x ( A ) = 2. :index(\mathbf{A})=2. :index(A)=2. 由 core-nilpotent 分解可知,矩阵 Q = [ X ∣ Y ] \mathbf{Q}=[\mathbf{X}|\mathbf{Y}] Q=[XY], 这里 X \mathbf{X} X 和 Y 分别为 R ( A 2 ) R(\mathbf{A}^2) R(A2) N ( A 2 ) N(\mathbf{A}^2) N(A2) 的一组基。从而直接计算可得,
X = ( − 8 12 8 ) , Y = ( − 1 0 1 0 0 1 ) , \left.\mathbf{X}=\left(\begin{array}{rr}-8\\12\\8\end{array}\right.\right),\quad\mathbf{Y}=\left(\begin{array}{rr}-1&0\\1&0\\0&1\end{array}\right), X= 8128 ,Y= 110001 ,
可得
Q = ( − 8 − 1 0 12 1 0 8 0 1 ) \left.\mathbf{Q}=\left(\begin{array}{rrr}-8&-1&0\\12&1&0\\8&0&1\end{array}\right.\right) Q= 8128110001
所以
Q − 1 A Q = ( 1 4 1 4 0 − 3 − 2 0 − 2 − 2 1 ) ( − 2 0 − 4 4 2 4 3 2 2 ) ( − 8 − 1 0 12 1 0 8 0 1 ) = ( 2 0 0 0 − 2 4 0 − 1 2 ) \left.\mathbf{Q}^{-1}\mathbf{A}\mathbf{Q}=\left(\begin{array}{rrr}\frac{1}{4}&\frac{1}{4}&0\\-3&-2&0\\-2&-2&1\end{array}\right.\right)\left(\begin{array}{rrr}-2&0&-4\\4&2&4\\3&2&2\end{array}\right)\left(\begin{array}{rrrr}-8&-1&0\\12&1&0\\8&0&1\end{array}\right)=\left(\begin{array}{rrr}2&0&0\\0&-2&4\\0&-1&2\end{array}\right) Q1AQ= 41324122001 243022442 8128110001 = 200021042
因为 Q − 1 A Q = ( C 0 0 N ) , C = ( 2 ) , N = ( − 2 4 − 1 2 ) \left.\mathbf{Q}^{-1}\mathbf{AQ}=\left(\begin{array}{ll}\mathbf{C}&\mathbf{0}\\\mathbf{0}&\mathbf{N}\end{array}\right.\right),\left.\mathbf{C}=(2),\mathbf{N}=\left(\begin{array}{cc}-2&4\\-1&2\end{array}\right.\right) Q1AQ=(C00N),C=(2),N=(2142)

所以

相关文章:

核—幂零分解

若向量空间 V \mathcal V V存在子空间 X \mathcal X X与 Y \mathcal Y Y,当 X Y V X ∩ Y 0 \mathcal {X\text{}Y\text{}V}\\ \mathcal {X}\cap \mathcal {Y}0 XYVX∩Y0 时称子空间 X \mathcal X X与 Y \mathcal Y Y是完备的,其中记为 X ⊕ Y V \ma…...

轻松掌控财务,分析账户花销,明细记录支出情况

随着科技的发展,我们的生活变得越来越智能化。然而,对于许多忙碌的现代人来说,管理财务可能是一件令人头疼的事情。复杂的账单、花销、收入,这些可能会让你感到无从下手。但现在,我们有一个全新的解决方案——一款全新…...

竞赛 题目:基于机器视觉opencv的手势检测 手势识别 算法 - 深度学习 卷积神经网络 opencv python

文章目录 1 简介2 传统机器视觉的手势检测2.1 轮廓检测法2.2 算法结果2.3 整体代码实现2.3.1 算法流程 3 深度学习方法做手势识别3.1 经典的卷积神经网络3.2 YOLO系列3.3 SSD3.4 实现步骤3.4.1 数据集3.4.2 图像预处理3.4.3 构建卷积神经网络结构3.4.4 实验训练过程及结果 3.5 …...

11. Spring源码篇之实例化前的后置处理器

简介 spring在创建Bean的过程中,提供了很多个生命周期,实例化前就是比较早的一个生命周期,顾名思义就是在Bean被实例化之前的处理,这个时候还没实例化,只能拿到该Bean的Class对象,如果在这个时候直接返回一…...

Python-Python高阶技巧:HTTP协议、静态Web服务器程序开发、循环接收客户端的连接请求

版本说明 当前版本号[20231114]。 版本修改说明20231114初版 目录 文章目录 版本说明目录HTTP协议1、网址1.1 网址的概念1.2 URL的组成1.3 知识要点 2、HTTP协议的介绍2.1 HTTP协议的概念及作用2.2 HTTP协议的概念及作用2.3 浏览器访问Web服务器的过程 3、HTTP请求报文3.1 H…...

P1304 哥德巴赫猜想

题目描述 输入一个偶数 N,验证 4∼N 所有偶数是否符合哥德巴赫猜想:任一大于 22 的偶数都可写成两个质数之和。如果一个数不止一种分法,则输出第一个加数相比其他分法最小的方案。例如 1010,10=3+7=5+510=3+7=5+5,则 10=5+510=5+5 是错误答案。 输入格式 第一行输入一个…...

CSDN每日一题学习训练——Python版(搜索插入位置、最大子序和)

版本说明 当前版本号[20231118]。 版本修改说明20231118初版 目录 文章目录 版本说明目录搜索插入位置题目解题思路代码思路参考代码 最大子序和题目解题思路代码思路参考代码 搜索插入位置 题目 给定一个排序数组和一个目标值,在数组中找到目标值,…...

Java在物联网中的重要性

【点我-这里送书】 本人详解 作者:王文峰,参加过 CSDN 2020年度博客之星,《Java王大师王天师》 公众号:JAVA开发王大师,专注于天道酬勤的 Java 开发问题中国国学、传统文化和代码爱好者的程序人生,期待你的关注和支持!本人外号:神秘小峯 山峯 转载说明:务必注明来源(…...

动态规划解背包问题

题目 题解 def knapsac(W: int, N: int, wt: List[int], val: List[int]) -> int:# 定义状态动作价值函数: dp[i][j],对于前i个物品,当前背包容量为j,最大的可装载价值dp [[0 for j in range(W1)] for i in range(N1)]# 状态动作转移for…...

PCL内置点云类型

PCL内置了许多点云类型供我们使用,下面先介绍PLC内置的点云数据类型 PCL中的点云类型为PointT;至于为什么是PointT类型需要追随到原来的ros开发中去,因为PCL库也是从原来的ROS中剥离出来的;大家都一致的认为点云结构是离散的N维信…...

clickhouse数据结构和常用数据操作

背景, 大数据中查询用mysql时间太长, 使用clickhouse 速度快, 数据写入mysql后同步到clickhouse中 测试1千万数据模糊搜索 mysql 需要30-40秒 clickhouse 约 100ms 一 数据结构和存储引擎 1 查看clickhouse所有数据类型 select * from system.data_type_families; 2 …...

upload-labs关卡9(基于win特性data流绕过)通关思路

文章目录 前言一、靶场需要了解的知识1::$data是什么 二、靶场第九关通关思路1、看源码2、bp抓包修改后缀名3、检查是否成功上传 总结 前言 此文章只用于学习和反思巩固文件上传漏洞知识,禁止用于做非法攻击。注意靶场是可以练习的平台,不能随意去尚未授…...

C++过河卒问题

#include <iostream> #include <cstring> using namespace std;int board[20][20]; // 棋盘 int dp[20][20][20][20]; // 动态规划数组int main() {int x0, y0, x1, y1;cin >> x0 >> y0 >> x1 >> y1; // 输入卒的起点和终点memset(board,…...

【机器学习12】集成学习

1 集成学习分类 1.1 Boosting 训练基分类器时采用串行的方式&#xff0c; 各个基分类器之间有依赖。每一层在训练的时候&#xff0c; 对前一层基分类器分错的样本&#xff0c; 给予更高的权重。 测试时&#xff0c; 根据各层分类器的结果的加权得到最终结果。 1.2 Bagging …...

nodeJs基础笔记

title: nodeJs基础笔记 date: 2023-11-18 22:33:54 tags: 1. Buffer 1. 概念 Buffer 是一个类似于数组的 对象 &#xff0c;用于表示固定长度的字节序列。 Buffer 本质是一段内存空间&#xff0c;专门用来处理 二进制数据 。 2. 特点 Buffer 大小固定且无法调整Buffer 性能…...

Skywalking流程分析_9(JDK类库中增强流程)

前言 之前的文章详细介绍了关于非JDK类库的静态方法、构造方法、实例方法的增强拦截流程&#xff0c;本文会详细分析JDK类库中的类是如何被增强拦截的 回到最开始的SkyWalkingAgent#premain try {/** 里面有个重点逻辑 把一些类注入到Boostrap类加载器中 为了解决Bootstrap类…...

矩阵的QR分解

矩阵的QR分解 GramSchmidt 设存在 B { x 1 , x 2 , … , x n } \mathcal{B}\left\{\mathbf{x}_{1},\mathbf{x}_{2},\ldots,\mathbf{x}_{n}\right\} B{x1​,x2​,…,xn​}在施密特正交化过程中 q 1 x 1 ∣ ∣ x 1 ∣ ∣ q_1\frac{x_1}{||x_1||} q1​∣∣x1​∣∣x1​​ q k …...

STL总结

STL vector 头文件<vector> 初始化,定义,定义长度&#xff0c;定义长度并且赋值&#xff0c;从数组中获取数据返回元素个数size()判断是否为空empty()返回第一个元素front()返回最后一个数back()删除最后一个数pop_back()插入push_back(x)清空clear()begin()end()使用s…...

资深测试总结,现在软件测试有未来吗?“你“的底气在哪里?

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 1、为什么会有 “…...

Scalable Exact Inference in Multi-Output Gaussian Processes

Orthogonal Instantaneous Linear Mixing Model TY are m-dimensional summaries&#xff0c;ILMM means ‘Instantaneous Linear Mixing Model’&#xff0c;OILMM means ‘Orthogonal Instantaneous Linear Mixing Model’ 辅助信息 作者未提供代码...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

【2025年】解决Burpsuite抓不到https包的问题

环境&#xff1a;windows11 burpsuite:2025.5 在抓取https网站时&#xff0c;burpsuite抓取不到https数据包&#xff0c;只显示&#xff1a; 解决该问题只需如下三个步骤&#xff1a; 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲

文章目录 前言第一部分&#xff1a;体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分&#xff1a;体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...

WebRTC从入门到实践 - 零基础教程

WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC&#xff1f; WebRTC&#xff08;Web Real-Time Communication&#xff09;是一个支持网页浏览器进行实时语音…...

Spring Boot + MyBatis 集成支付宝支付流程

Spring Boot MyBatis 集成支付宝支付流程 核心流程 商户系统生成订单调用支付宝创建预支付订单用户跳转支付宝完成支付支付宝异步通知支付结果商户处理支付结果更新订单状态支付宝同步跳转回商户页面 代码实现示例&#xff08;电脑网站支付&#xff09; 1. 添加依赖 <!…...