当前位置: 首页 > news >正文

核—幂零分解

若向量空间 V \mathcal V V存在子空间 X \mathcal X X Y \mathcal Y Y,当
X + Y = V X ∩ Y = 0 \mathcal {X\text{+}Y\text{=}V}\\ \mathcal {X}\cap \mathcal {Y}=0 X+Y=VXY=0
时称子空间 X \mathcal X X Y \mathcal Y Y是完备的,其中记为 X ⊕ Y = V \mathcal X \oplus \mathcal Y = \mathcal V XY=V

若存在 X ⊕ Y = V \mathcal X \oplus \mathcal Y = \mathcal V XY=V, 对于 x ∈ X , y ∈ Y , v ∈ V x\in \mathcal X,y \in \mathcal Y,v \in \mathcal V xX,yY,vV,满足 v = x + y v=x+y v=x+y,则向量 x x x被称为向量 v v v沿着 Y \mathcal Y Y X \mathcal X X 空间的投影,向量 y y y被称为向量 v v v沿着 X \mathcal X X Y \mathcal Y Y 空间的投影,若存在 P v = x Pv=x Pv=x P P P被称为沿着 Y \mathcal Y Y X \mathcal X X 空间的投影算子,其中

  • P 2 = P P^2=P P2=P
  • 1 − P 1-P 1P沿着 X \mathcal X X Y \mathcal Y Y 空间的投影算子
  • R ( P ) = N ( 1 − P ) = X R(P)=N(1-P)=\mathcal X R(P)=N(1P)=X
  • N ( P ) = R ( 1 − P ) = Y N(P)=R(1-P)=\mathcal Y N(P)=R(1P)=Y

V = R n V=\mathfrak R^n V=Rn,则 P [ X ∣ Y ] = [ X ∣ 0 ] P[\mathbf X|\mathbf Y]=[\mathbf X|\mathbf 0] P[XY]=[X0],即 P = [ X ∣ 0 ] [ X ∣ Y ] − 1 = [ X ∣ 0 ] ( I 0 0 0 ) [ X ∣ Y ] − 1 P=[\mathbf X|\mathbf 0][\mathbf X|\mathbf Y]^{-1}=[\mathbf X|\mathbf 0]\begin{pmatrix}\mathbf I&\mathbf0\\\mathbf 0&\mathbf 0\end{pmatrix}[\mathbf X|\mathbf Y]^{-1} P=[X0][XY]1=[X0](I000)[XY]1,其中 X , Y \mathbf X,\mathbf Y X,Y分别表示 X , Y \mathcal X ,\mathcal Y X,Y的一组基

值域零空间分解

若存在一个k,满足 rank ( A k ) = rank ( A k + 1 ) \text{rank}(A^k)=\text{rank}(A^{k+1}) rank(Ak)=rank(Ak+1),则将最小的那个k值称为index,其中非奇异矩阵的index为0

对于奇异矩阵 A n × n A_{n\times n} An×n,存在一个index k,使得$R(A^k)\oplus N(A^k)=\mathfrak R^n $

若存在一个矩阵 A k = 0 A^k=0 Ak=0,其中index(A)=0,则矩阵A被称为幂零矩阵

核—幂零分解

如果A是一个 n × n n\times n n×n 的index为k的奇异矩阵,其中 rank ( A k ) = r \text{rank}(A^k)=r rank(Ak)=r,则存在一个非奇异矩阵 Q Q Q, 满足
Q − 1 A Q = ( C r × r 0 0 N ) \left.\mathbf{Q}^{-1}\mathbf{A}\mathbf{Q}=\left(\begin{array}{cc}\mathbf{C}_{r\times r}&\mathbf{0}\\\mathbf{0}&\mathbf{N}\end{array}\right.\right) Q1AQ=(Cr×r00N)
其中 C C C是非奇异矩阵, N N N是index为k的幂零矩阵,其中 Q Q Q为矩阵 A k A^k Ak的值域空间和零空间的基的组合

若存在 A = Q ( C 0 0 N ) Q − 1 \left.\mathbf{A}=\mathbf{Q}\left(\begin{array}{ll}\mathbf{C}&0\\0&\mathbf{N}\end{array}\right.\right)\mathbf{Q}^{-1} A=Q(C00N)Q1,则 A D = Q ( C − 1 0 0 0 ) Q − 1 \left.\mathbf{A}^D=\mathbf{Q}\left(\begin{array}{ll}\mathbf{C}^{-1}&0\\0&0\end{array}\right.\right)\mathbf{Q}^{-1} AD=Q(C1000)Q1,其中 A D A^D AD被称为A的广义逆

对于矩阵 A = ( − 2 0 − 4 4 2 4 3 2 2 ) \left.\textbf{A}=\left(\begin{array}{rrr}-2&0&-4\\4&2&4\\3&2&2\end{array}\right.\right) A= 243022442 ,计算出 core-nilpoten 的分解形式,并给出对应的 Drazin 逆的形式。

直接计算可得 : r a n k ( A ) = 2 , r a n k ( A 2 ) = 1 , r a n k ( A 3 ) = 1 :\:rank(\mathbf{A})=2,\:rank(\mathbf{A^2})=1,\:rank(\mathbf{A^3})=1 :rank(A)=2,rank(A2)=1,rank(A3)=1, 由此可知 : i n d e x ( A ) = 2. :index(\mathbf{A})=2. :index(A)=2. 由 core-nilpotent 分解可知,矩阵 Q = [ X ∣ Y ] \mathbf{Q}=[\mathbf{X}|\mathbf{Y}] Q=[XY], 这里 X \mathbf{X} X 和 Y 分别为 R ( A 2 ) R(\mathbf{A}^2) R(A2) N ( A 2 ) N(\mathbf{A}^2) N(A2) 的一组基。从而直接计算可得,
X = ( − 8 12 8 ) , Y = ( − 1 0 1 0 0 1 ) , \left.\mathbf{X}=\left(\begin{array}{rr}-8\\12\\8\end{array}\right.\right),\quad\mathbf{Y}=\left(\begin{array}{rr}-1&0\\1&0\\0&1\end{array}\right), X= 8128 ,Y= 110001 ,
可得
Q = ( − 8 − 1 0 12 1 0 8 0 1 ) \left.\mathbf{Q}=\left(\begin{array}{rrr}-8&-1&0\\12&1&0\\8&0&1\end{array}\right.\right) Q= 8128110001
所以
Q − 1 A Q = ( 1 4 1 4 0 − 3 − 2 0 − 2 − 2 1 ) ( − 2 0 − 4 4 2 4 3 2 2 ) ( − 8 − 1 0 12 1 0 8 0 1 ) = ( 2 0 0 0 − 2 4 0 − 1 2 ) \left.\mathbf{Q}^{-1}\mathbf{A}\mathbf{Q}=\left(\begin{array}{rrr}\frac{1}{4}&\frac{1}{4}&0\\-3&-2&0\\-2&-2&1\end{array}\right.\right)\left(\begin{array}{rrr}-2&0&-4\\4&2&4\\3&2&2\end{array}\right)\left(\begin{array}{rrrr}-8&-1&0\\12&1&0\\8&0&1\end{array}\right)=\left(\begin{array}{rrr}2&0&0\\0&-2&4\\0&-1&2\end{array}\right) Q1AQ= 41324122001 243022442 8128110001 = 200021042
因为 Q − 1 A Q = ( C 0 0 N ) , C = ( 2 ) , N = ( − 2 4 − 1 2 ) \left.\mathbf{Q}^{-1}\mathbf{AQ}=\left(\begin{array}{ll}\mathbf{C}&\mathbf{0}\\\mathbf{0}&\mathbf{N}\end{array}\right.\right),\left.\mathbf{C}=(2),\mathbf{N}=\left(\begin{array}{cc}-2&4\\-1&2\end{array}\right.\right) Q1AQ=(C00N),C=(2),N=(2142)

所以

相关文章:

核—幂零分解

若向量空间 V \mathcal V V存在子空间 X \mathcal X X与 Y \mathcal Y Y,当 X Y V X ∩ Y 0 \mathcal {X\text{}Y\text{}V}\\ \mathcal {X}\cap \mathcal {Y}0 XYVX∩Y0 时称子空间 X \mathcal X X与 Y \mathcal Y Y是完备的,其中记为 X ⊕ Y V \ma…...

轻松掌控财务,分析账户花销,明细记录支出情况

随着科技的发展,我们的生活变得越来越智能化。然而,对于许多忙碌的现代人来说,管理财务可能是一件令人头疼的事情。复杂的账单、花销、收入,这些可能会让你感到无从下手。但现在,我们有一个全新的解决方案——一款全新…...

竞赛 题目:基于机器视觉opencv的手势检测 手势识别 算法 - 深度学习 卷积神经网络 opencv python

文章目录 1 简介2 传统机器视觉的手势检测2.1 轮廓检测法2.2 算法结果2.3 整体代码实现2.3.1 算法流程 3 深度学习方法做手势识别3.1 经典的卷积神经网络3.2 YOLO系列3.3 SSD3.4 实现步骤3.4.1 数据集3.4.2 图像预处理3.4.3 构建卷积神经网络结构3.4.4 实验训练过程及结果 3.5 …...

11. Spring源码篇之实例化前的后置处理器

简介 spring在创建Bean的过程中,提供了很多个生命周期,实例化前就是比较早的一个生命周期,顾名思义就是在Bean被实例化之前的处理,这个时候还没实例化,只能拿到该Bean的Class对象,如果在这个时候直接返回一…...

Python-Python高阶技巧:HTTP协议、静态Web服务器程序开发、循环接收客户端的连接请求

版本说明 当前版本号[20231114]。 版本修改说明20231114初版 目录 文章目录 版本说明目录HTTP协议1、网址1.1 网址的概念1.2 URL的组成1.3 知识要点 2、HTTP协议的介绍2.1 HTTP协议的概念及作用2.2 HTTP协议的概念及作用2.3 浏览器访问Web服务器的过程 3、HTTP请求报文3.1 H…...

P1304 哥德巴赫猜想

题目描述 输入一个偶数 N,验证 4∼N 所有偶数是否符合哥德巴赫猜想:任一大于 22 的偶数都可写成两个质数之和。如果一个数不止一种分法,则输出第一个加数相比其他分法最小的方案。例如 1010,10=3+7=5+510=3+7=5+5,则 10=5+510=5+5 是错误答案。 输入格式 第一行输入一个…...

CSDN每日一题学习训练——Python版(搜索插入位置、最大子序和)

版本说明 当前版本号[20231118]。 版本修改说明20231118初版 目录 文章目录 版本说明目录搜索插入位置题目解题思路代码思路参考代码 最大子序和题目解题思路代码思路参考代码 搜索插入位置 题目 给定一个排序数组和一个目标值,在数组中找到目标值,…...

Java在物联网中的重要性

【点我-这里送书】 本人详解 作者:王文峰,参加过 CSDN 2020年度博客之星,《Java王大师王天师》 公众号:JAVA开发王大师,专注于天道酬勤的 Java 开发问题中国国学、传统文化和代码爱好者的程序人生,期待你的关注和支持!本人外号:神秘小峯 山峯 转载说明:务必注明来源(…...

动态规划解背包问题

题目 题解 def knapsac(W: int, N: int, wt: List[int], val: List[int]) -> int:# 定义状态动作价值函数: dp[i][j],对于前i个物品,当前背包容量为j,最大的可装载价值dp [[0 for j in range(W1)] for i in range(N1)]# 状态动作转移for…...

PCL内置点云类型

PCL内置了许多点云类型供我们使用,下面先介绍PLC内置的点云数据类型 PCL中的点云类型为PointT;至于为什么是PointT类型需要追随到原来的ros开发中去,因为PCL库也是从原来的ROS中剥离出来的;大家都一致的认为点云结构是离散的N维信…...

clickhouse数据结构和常用数据操作

背景, 大数据中查询用mysql时间太长, 使用clickhouse 速度快, 数据写入mysql后同步到clickhouse中 测试1千万数据模糊搜索 mysql 需要30-40秒 clickhouse 约 100ms 一 数据结构和存储引擎 1 查看clickhouse所有数据类型 select * from system.data_type_families; 2 …...

upload-labs关卡9(基于win特性data流绕过)通关思路

文章目录 前言一、靶场需要了解的知识1::$data是什么 二、靶场第九关通关思路1、看源码2、bp抓包修改后缀名3、检查是否成功上传 总结 前言 此文章只用于学习和反思巩固文件上传漏洞知识,禁止用于做非法攻击。注意靶场是可以练习的平台,不能随意去尚未授…...

C++过河卒问题

#include <iostream> #include <cstring> using namespace std;int board[20][20]; // 棋盘 int dp[20][20][20][20]; // 动态规划数组int main() {int x0, y0, x1, y1;cin >> x0 >> y0 >> x1 >> y1; // 输入卒的起点和终点memset(board,…...

【机器学习12】集成学习

1 集成学习分类 1.1 Boosting 训练基分类器时采用串行的方式&#xff0c; 各个基分类器之间有依赖。每一层在训练的时候&#xff0c; 对前一层基分类器分错的样本&#xff0c; 给予更高的权重。 测试时&#xff0c; 根据各层分类器的结果的加权得到最终结果。 1.2 Bagging …...

nodeJs基础笔记

title: nodeJs基础笔记 date: 2023-11-18 22:33:54 tags: 1. Buffer 1. 概念 Buffer 是一个类似于数组的 对象 &#xff0c;用于表示固定长度的字节序列。 Buffer 本质是一段内存空间&#xff0c;专门用来处理 二进制数据 。 2. 特点 Buffer 大小固定且无法调整Buffer 性能…...

Skywalking流程分析_9(JDK类库中增强流程)

前言 之前的文章详细介绍了关于非JDK类库的静态方法、构造方法、实例方法的增强拦截流程&#xff0c;本文会详细分析JDK类库中的类是如何被增强拦截的 回到最开始的SkyWalkingAgent#premain try {/** 里面有个重点逻辑 把一些类注入到Boostrap类加载器中 为了解决Bootstrap类…...

矩阵的QR分解

矩阵的QR分解 GramSchmidt 设存在 B { x 1 , x 2 , … , x n } \mathcal{B}\left\{\mathbf{x}_{1},\mathbf{x}_{2},\ldots,\mathbf{x}_{n}\right\} B{x1​,x2​,…,xn​}在施密特正交化过程中 q 1 x 1 ∣ ∣ x 1 ∣ ∣ q_1\frac{x_1}{||x_1||} q1​∣∣x1​∣∣x1​​ q k …...

STL总结

STL vector 头文件<vector> 初始化,定义,定义长度&#xff0c;定义长度并且赋值&#xff0c;从数组中获取数据返回元素个数size()判断是否为空empty()返回第一个元素front()返回最后一个数back()删除最后一个数pop_back()插入push_back(x)清空clear()begin()end()使用s…...

资深测试总结,现在软件测试有未来吗?“你“的底气在哪里?

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 1、为什么会有 “…...

Scalable Exact Inference in Multi-Output Gaussian Processes

Orthogonal Instantaneous Linear Mixing Model TY are m-dimensional summaries&#xff0c;ILMM means ‘Instantaneous Linear Mixing Model’&#xff0c;OILMM means ‘Orthogonal Instantaneous Linear Mixing Model’ 辅助信息 作者未提供代码...

Chapter03-Authentication vulnerabilities

文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

python如何将word的doc另存为docx

将 DOCX 文件另存为 DOCX 格式&#xff08;Python 实现&#xff09; 在 Python 中&#xff0c;你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是&#xff0c;.doc 是旧的 Word 格式&#xff0c;而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...

【学习笔记】深入理解Java虚拟机学习笔记——第4章 虚拟机性能监控,故障处理工具

第2章 虚拟机性能监控&#xff0c;故障处理工具 4.1 概述 略 4.2 基础故障处理工具 4.2.1 jps:虚拟机进程状况工具 命令&#xff1a;jps [options] [hostid] 功能&#xff1a;本地虚拟机进程显示进程ID&#xff08;与ps相同&#xff09;&#xff0c;可同时显示主类&#x…...

return this;返回的是谁

一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请&#xff0c;不同级别的经理有不同的审批权限&#xff1a; // 抽象处理者&#xff1a;审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...

【C++】纯虚函数类外可以写实现吗?

1. 答案 先说答案&#xff0c;可以。 2.代码测试 .h头文件 #include <iostream> #include <string>// 抽象基类 class AbstractBase { public:AbstractBase() default;virtual ~AbstractBase() default; // 默认析构函数public:virtual int PureVirtualFunct…...

《信号与系统》第 6 章 信号与系统的时域和频域特性

目录 6.0 引言 6.1 傅里叶变换的模和相位表示 6.2 线性时不变系统频率响应的模和相位表示 6.2.1 线性与非线性相位 6.2.2 群时延 6.2.3 对数模和相位图 6.3 理想频率选择性滤波器的时域特性 6.4 非理想滤波器的时域和频域特性讨论 6.5 一阶与二阶连续时间系统 6.5.1 …...