使用python测试框架完成自动化测试并生成报告-实例练习
练习一: 使用unittest 完成自动化测试并使用HttpTestRunner生成报告
''' 1、写个简单的计算器功能,大小写转换功能,随机生成字符串功能 2、编写测试用例,不同的数据(你能想到的所有测试用例),并进行断言。除0的选择可以跳过skip,随机生成字符串功能可以断言是否包含你名字的缩写。 3、使用unittest框架+HTMLTestRunner,最后生成html报告 '''
import unittest
import os
import time
import logging
import ddt
from HTMLTestRunner import HTMLTestRunner
import randomtestData1 = [{'a':5,'b':1,'x':'+','result':6},{'a':5,'b':1,'x':'-','result':4},{'a':5,'b':1,'x':'*','result':5},{'a':5,'b':1,'x':'/','result':5}]
testData2 = [{'string':'asd','stringType':'upper','result':'ASD'},{'string': 'ASD', 'stringType': 'lower','result':'asd'}]#被测函数
class test_demo():def jisuanqi(a,x,b):if x == '+':return a+belif x =='-':return a-belif x == '*':return a*belif x == '/':return a/belse:logging.info('只支持数字加减乘除四则运算')def translation(string,stringType):if stringType == 'lower':return string.lower()elif stringType == 'upper':return string.upper()else:print('ERROR:只支持大小写类型转换')def random_string(num):return random.random(num)#测试函数
@ddt.ddt
class TestCases(unittest.TestCase):@classmethoddef setUpClass(cls):print('整个测试类运行前执行')def setUp(self):print("每个测试方法执行前运行一次")def tearDown(self):print("每个测试方法执行完后运行一次")@ddt.data(*testData1)def test_case_jisuanqi(self,data):result = test_demo.jisuanqi(data['a'],data['x'],data['b'])assert result == data['result']@ddt.data(*testData2)def test_case_translation(self,data):result = test_demo.translation(data['string'],data['stringType'])assert result == data['result']def test_case_randomString(self):pass@classmethoddef tearDownClass(cls):print("整个测试类运行完成后执行一次")#测试报告
if __name__ == '__main__':report_path = os.path.join(os.path.dirname(__file__), 'report')now = time.strftime("%Y-%m-%d %H_%M_%S", time.localtime())filename = report_path + "/" + now + "_result.html"print('******************************************')suite = unittest.TestSuite()suite.addTests(unittest.TestLoader().loadTestsFromTestCase(TestCases))with open(filename, 'wb') as fp:runner = HTMLTestRunner(stream=fp,title='测试报告',description='测试用例')runner.run(suite)

练习二:使用pytest完成自动化测试并用allure生成测试报告
''' 建立一个登陆模块的测试用例,一个人力资源模块的测试用例,其中包括增删改查4个小功能,查询不需要登陆。 使用pytest,allure的方式,技术上要有登陆依赖用Fixture,conftest实现,要添加人员时有参数化,数据驱动, 使用文件或list/dict的方式传入数据。通过allure的添加附加信息,及各种信息包括feature,story,step,attach,title,discription等。 ''' conftest.py
@pytest.fixture(scope = 'module')
def test_login(request):user = request.param['user']password = request.param['password']if user != 'linda':print('用户名错误')elif password != '888888':print('密码错误')else:print('登陆成功')yield # 模块执行完case后 在最后执行一遍teardown操作。print('执行teardown')print('推出登陆')
Pytest.py
import allure
import pytest
import os
import subprocesstest_user_data = [{"user": "linda", "password": "888888"}]test_user_data1 = [{"user": "linda", "password": "888888"},{"user": "servenruby", "password": "123456"},{"user": "linda", "password": "123456"}]test_user_data2 = [{"name": "中国平安", "money": 999, "country": 'china'},{"name": "阿里巴巴", "money": 888, "country": 'jepan'},{"name": "拼多多", "money": 666, "country": 'USA'}]@allure.feature('测试登录模块')
@pytest.mark.run(order = 1) #第一个执行
@pytest.mark.parametrize('test_login', test_user_data1, indirect=True)
class TestLogin():def test_login_case1(self,test_login):assert 1 == 1@allure.feature('测试人事模块')
@pytest.mark.parametrize('test_login', test_user_data, indirect=True)
class TestPersion():@allure.story('测试用例:新增人员')@pytest.mark.parametrize('data',test_user_data2)def test_persion_add(self,test_login,data):with allure.step("步骤1"):allure.attach('说明')print('新增用户%s'%data['name'])@allure.story('测试用例:删除新增的人员')@pytest.mark.parametrize('data',test_user_data2)def test_persion_del(self,test_login,data):print('删除用户%s'%data['name'])
558 pytest -v -s PyTest.py --alluredir=./result/ 在测试执行期间收集结果
559 allure serve ./result/ 测试完成后查看实际报告, 在线看报告


相关文章:
使用python测试框架完成自动化测试并生成报告-实例练习
练习一: 使用unittest 完成自动化测试并使用HttpTestRunner生成报告 1、写个简单的计算器功能,大小写转换功能,随机生成字符串功能 2、编写测试用例,不同的数据(你能想到的所有测试用例),并进行断言。除0的…...
JavaWeb 实战 01 - 计算机是如何工作的
计算机是如何工作的1. 计算机发展史2. 计算机的基本组成2.1 冯诺依曼体系结构2.2 CPU的内部结构2.3 指令2.3.1 指令表2.3.1.1 寄存器2.3.2 CPU的工作流程2.4 小结3. 操作系统3.1 核心功能3.2 操作系统的软硬件结构3.3 什么是进程 / 任务3.4 进程管理3.4.1 管理3.4.2 PCB : 进程…...
线性代数学习-1
线性代数学习-1行图像和列图像行图像列图像总结本文转载于https://herosunly.blog.csdn.net/article/details/88698381 该文章本人认为十分有用,便自己敲一遍笔记加固印象原文链接 原文这个笔记感觉比我老师讲的更加透彻,清晰。很好的展示了线性代数的原…...
人工智能写的十段代码,九个通过测试了
“抢走你工作的不会是 AI ,而是先掌握 AI 能力的人” 编程测试 1. 我想用golang实现二叉树前序,请你帮我写一下代码。 // 定义二叉树节点 type TreeNode struct {Val intLeft *TreeNodeRight *TreeNode }// 前序遍历 func PreOrderTraversal(root *Tre…...
巴塞尔问题数值逼近方法
巴塞尔问题:计算所有平方数的导数和 ∑n1∞1n2limn→∞(112122⋯1n2)\sum_{n1}^{\infty} \frac{1}{n^{2}}\lim _{n \rightarrow\infty}\left(\frac{1}{1^{2}}\frac{1}{2^{2}}\cdots\frac{1}{n^{2}}\right)n1∑∞n21n→∞lim(121221⋯n21) 其理论解为…...
【深度学习环境】Docker
1. Docker 相关安装配置 1.1 docker 安装 参考:https://www.runoob.com/docker/ubuntu-docker-install.html 1.2 nvidia-docker 安装 参考:https://zhuanlan.zhihu.com/p/37519492 1.3 代理加速 参考:https://yeasy.gitbook.io/docker_…...
基于vscode开发vue项目的详细步骤教程 2 第三方图标库FontAwesome
1、Vue下载安装步骤的详细教程(亲测有效) 1_水w的博客-CSDN博客 2、Vue下载安装步骤的详细教程(亲测有效) 2 安装与创建默认项目_水w的博客-CSDN博客 3、基于vscode开发vue项目的详细步骤教程_水w的博客-CSDN博客 目录 六、第三方图标库FontAwesome 1 安装FontAwesome 解决报…...
今天面了个腾讯拿25K出来的软件测试工程师,让我见识到了真正的天花板...
今天上班开早会就是新人见面仪式,听说来了个很厉害的大佬,年纪还不大,是上家公司离职过来的,薪资已经达到中高等水平,很多人都好奇不已,能拿到这个薪资应该人不简单,果然,自我介绍的…...
OSG三维渲染引擎编程学习之六十九:“第六章:OSG场景工作机制” 之 “6.9 OSG数据变量”
目录 第六章 OSG场景工作机制 6.9 OSG数据变量 第六章 OSG场景工作机制 作为一个成熟的三维渲染引擎,需要提供快速获取场景数据、节点等信息,具备自定义数据或动画更新接口,能接收应用程序或窗口等各类消息。OSG三维渲染引擎能较好地完成上述工作,OSG是采用什么方式或工作…...
Tektronix泰克TDP3500差分探头3.5GHz
附加功能: 带宽:3.5 GHz 差分输入电容:≤0.3 pF 差分输入电阻:100 kΩ DC pk 交流输入电压:15 V >60 dB 在 1 MHz 和 >25 dB 在 1 GHz CMRR 出色的共模抑制——减少较高共模环境中的测量误差 低电容和电阻负载…...
轻松实现内网穿透:实现远程访问你的私人网络
导语:内网穿透是什么?为什么我们需要它?今天我们将介绍这个令人惊叹的技术,让你实现远程访问你的私人网络。 使用内网穿透,轻松实现外网访问本地部署的网站 第一部分:什么是内网穿透? 通俗解释…...
MySQL长字符截断
MySQL超长字符截断又名"SQL-Column-Truncation",是安全研究者Stefan Esser在2008 年8月提出的。 在MySQL中的一个设置里有一个sql_mode选项,当sql_mode设置为default时,即没有开启STRICT_ALL_TABLES选项时(MySQLsql_mo…...
python计算量比指标
百度百科是这么写的:量比定义:股市开市后平均每分钟的成交量与过去5个交易日平均每分钟成交量之比。计算公式:量比(现成交总手数 / 现累计开市时间(分) )/ 过去5日平均每分钟成交量。这里公式没有问题,但是…...
下拉框推荐-Suggest-SUG
什么是下拉框推荐 在我们使用各种app(飞猪)想要搜索我们想要的东西,假设我想要上海迪士尼的门票,那么精确的query是“上海迪士尼门票”,要打7个字,如果在你输入“上海”的时候app就推荐了query“上海迪士尼…...
Nmap的几种扫描方式以及相应的命令
Nmap是一款常用的网络扫描工具,它可以扫描目标网络上的主机和服务,帮助安全研究员了解目标网络的拓扑结构和安全情况。以下是Nmap的几种扫描方式以及相应的命令: 1.Ping扫描 Ping扫描可以用来探测网络上响应的主机,可以使用“-sn…...
Qt::QOpenGLWidget 渲染天空壳
在qt窗口中嵌入opengl渲染天空壳和各种立方体一 学前知识天空壳的渲染学前小知识1 立方体贴图 天空壳的渲染就是利用立方体贴图来实现渲染流程2 基础光照 光照模型3 opengl帧缓冲 如何自定义帧缓冲实现后期特效4 glsl常见的shader内置函数 glsl编程常用的内置函数二 shader代码…...
谷歌搜索技巧大全 | 谷歌高级搜索语法指令
谷歌搜索技巧是利用各种高级搜索语法或者搜索指令,让我们能够使用Google进行精确化的搜索,外贸找客户和学术文件查找都可以应用到这些搜索技巧。(大部分命令也适用百度搜索)。Google通过互联网收集数据,抓取有意义的信息,将其存储…...
JAVA开发(JAVA垃圾回收的几种常见算法)
JAVA GC 是JAVA虚拟机中的一个系统或者说是一个服务,专门是用于内存回收,交还给虚拟机的功能。 JAVA语言相对其他语言除了跨平台性,还有一个最重要的功能是JAVA语言封装了对内存的自动回收。俗称垃圾回收器。所以有时候我们不得不承认&#…...
你还不会用CAD一键布置停车位?赶紧学起来!
在设计CAD建筑图的过程中,你还在一个一个地画停车位吗?那未免也太低效了吧!今天,小编用浩辰CAD建筑软件来教大家一键布置停车位,赶紧学起来吧! 浩辰CAD建筑软件是行业应用最广泛的创新型建筑设计专业软件&…...
【MySQL之MySQL底层分析篇】系统学习MySQL,从应用SQL语法到底层知识讲解,这将是你见过最完成的知识体系
文章目录MySQL体系结构MySQL存储结构(以InnoDB为例)MySQL执行流程(以InnoDB为例)1. 数据写入原理2. 数据查询原理MySQL存储引擎1. 为什么需要不同的存储引擎2. 如何为数据指定不同的存储引擎,数据粒度又是多少3. MySQL…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...
观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...
业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...
剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...
自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...
Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...
