当前位置: 首页 > news >正文

参数估计(一)(点估计)

文章目录

  • 点估计和估计量的求法
    • 点估计概念
    • 矩估计法
    • 极大似然估计法
  • 参考文献

参数估计是数理统计中重要的基本问题之一。通常,称参数的可容许值的全体为参数空间,并记为 Θ \Theta Θ。所谓参数估计就是由样本对总体分布所含的未知参数做出估计。另外,在有些实际问题中,由于事先并不知道总体 X X X 的分布类型,而要对其某些数字特征,如均值、方差等做出估计,习惯上也把这些数字特征称为参数,对它们进行估计也属于参数估计范畴。

点估计和估计量的求法

点估计概念

设总体 X X X 的分布函数是 F ( x ; θ 1 , . . . , θ l ) F(x;\theta_1,...,\theta_l) F(x;θ1,...,θl),其中 θ 1 , . . . , θ l \theta_1,...,\theta_l θ1,...,θl 是未知参数, X 1 , . . . , X n X_1,...,X_n X1,...,Xn 是来自总体 X X X 的样本, x 1 , . . . , x n x_1,...,x_n x1,...,xn 是相应的样本值,参数点估计就是研究如何构造适当的统计量 θ ^ i ( X 1 , . . . , X n ) \hat{\theta}_i(X_1,...,X_n) θ^i(X1,...,Xn),并分别用观察值 θ ^ i ( x 1 , . . . , x n ) \hat{\theta}_i(x_1,...,x_n) θ^i(x1,...,xn) 作为未知参数 θ i \theta_i θi 的估计

通常,称用作估计的统计量 θ ^ i ( X 1 , . . . , X n ) \hat{\theta}_i(X_1,...,X_n) θ^i(X1,...,Xn)估计量,称其观察值 θ ^ i ( x 1 , . . . , x n ) \hat{\theta}_i(x_1,...,x_n) θ^i(x1,...,xn)估计值

由于对不同的样本值,得到的参数估计值往往不同,因此,点估计问题的关键在于构造估计量的方法。下面介绍求估计量的一些常用方法。

矩估计法

设总体 X X X 的分布中含有 l l l 个未知参数 θ 1 , . . . , θ l \theta_1,...,\theta_l θ1,...,θl,又设总体 X X X 的前 l l l 阶原点矩 α k = E ( X k ) ( k = 1 , . . . , l ) \alpha_k=E(X^k)(k=1,...,l) αk=E(Xk)(k=1,...,l) 存在,且是 θ 1 , . . . , θ l \theta_1,...,\theta_l θ1,...,θl 的函数,即 α k = α k ( θ 1 , . . . , θ l ) \alpha_k=\alpha_k(\theta_1,...,\theta_l) αk=αk(θ1,...,θl),令
α k ( θ ^ 1 , . . . , θ ^ l ) = A k , k = 1 , . . . , l \alpha_k(\hat{\theta}_1,...,\hat{\theta}_l)=A_k,\quad k=1,...,l αk(θ^1,...,θ^l)=Ak,k=1,...,l
解此方程组可得 θ ^ 1 , . . . , θ ^ l \hat{\theta}_1,...,\hat{\theta}_l θ^1,...,θ^l,并将它们分别作为 θ 1 , . . . , θ l \theta_1,...,\theta_l θ1,...,θl 的估计量。这种求估计量的方法称为矩估计法,用矩估计法求得的估计量称为矩估计量

例:设总体 X X X 的二阶矩存在, X 1 , . . . , X n X_1,...,X_n X1,...,Xn 为总体 X X X 的样本,求总体均值 μ \mu μ 与总体方差 σ 2 \sigma^2 σ2 的矩估计。

解:因 α 1 = μ , α 2 = σ 2 + μ 2 \alpha_1=\mu, \alpha_2=\sigma^2+\mu^2 α1=μ,α2=σ2+μ2,令 { μ ^ = A 1 = X ˉ σ ^ 2 + μ ^ 2 = A 2 = 1 n ∑ i = 1 n X i 2 \begin{cases} \hat{\mu}=A_1=\bar{X} \\ \hat{\sigma}^2+\hat{\mu}^2=A_2=\frac{1}{n}\sum_{i=1}^n X_i^2 \end{cases} {μ^=A1=Xˉσ^2+μ^2=A2=n1i=1nXi2
解得 μ \mu μ σ 2 \sigma^2 σ2 的矩估计分别为
μ ^ = X ˉ \hat{\mu}=\bar{X} μ^=Xˉ σ ^ 2 = A 2 − X ˉ 2 = S 2 \hat{\sigma}^2=A_2-\bar{X}^2=S^2 σ^2=A2Xˉ2=S2

极大似然估计法

以下用 X = ( X 1 , . . . , X n ) T \boldsymbol{X}=(X_1,...,X_n)^T X=(X1,...,Xn)T 表示样本, x = ( x 1 , . . . , x n ) T \boldsymbol{x}=(x_1,...,x_n)^T x=(x1,...,xn)T 表示样本点, f ( x ; θ ) f(\boldsymbol{x};\theta) f(x;θ) 表示样本分布。

极大似然法的提出是基于如下的想法:

当给定 θ \theta θ 时, f ( x ; θ ) f(\boldsymbol{x};\theta) f(x;θ) 度量样本 X \boldsymbol{X} X x \boldsymbol{x} x 点发生的可能性。对于样本空间中的两个不同样本点 x 1 , x 2 ∈ X \boldsymbol{x}_1, \boldsymbol{x}_2 \in \mathcal{X} x1,x2X,如果有 f ( x 1 ; θ ) > f ( x 2 ; θ ) f(\boldsymbol{x}_1;\theta) > f(\boldsymbol{x}_2;\theta) f(x1;θ)>f(x2;θ),自然会认为样本 X \boldsymbol{X} X 更可能在 x 1 \boldsymbol{x}_1 x1 点发生。

现在换个角度来看待 f ( x ; θ ) f(\boldsymbol{x};\theta) f(x;θ)。当给定样本点 x \boldsymbol{x} x 时,对参数空间中的两个不同参数 θ 1 , θ 2 ∈ Θ \theta_1,\theta_2 \in \Theta θ1,θ2Θ,如果有 f ( x ; θ 1 ) > f ( x ; θ 2 ) f(\boldsymbol{x};\theta_1) > f(\boldsymbol{x};\theta_2) f(x;θ1)>f(x;θ2),那么会认为样本点 x \boldsymbol{x} x是来自总体 f ( X ; θ 1 ) f(\boldsymbol{X};\theta_1) f(X;θ1),所以,数 f ( x ; θ ) f(\boldsymbol{x};\theta) f(x;θ) 的大小可作为参数 θ \theta θ 对产生样本观察值 x \boldsymbol{x} x 有多大似然性的一种度量。

当给定样本点 x \boldsymbol{x} x 时,称 f ( x ; θ ) f(\boldsymbol{x};\theta) f(x;θ) θ \theta θ似然函数,记为 L ( θ ; x ) L(\theta;\boldsymbol{x}) L(θ;x),即
L ( θ ; x ) = f ( x ; θ ) = { ∏ i = 1 n p ( x i ; θ ) , 总体 X 为离散型随机变量 ∏ i = 1 n f ( x i ; θ ) , 总体 X 为连续型随机变量 L(\theta;\boldsymbol{x})=f(\boldsymbol{x};\theta)=\begin{cases} \prod_{i=1}^np(x_i;\theta), & 总体 X 为离散型随机变量 \\ \prod_{i=1}^nf(x_i;\theta), & 总体 X 为连续型随机变量 \end{cases} L(θ;x)=f(x;θ)={i=1np(xi;θ),i=1nf(xi;θ),总体X为离散型随机变量总体X为连续型随机变量
而称 ln ⁡ f ( x ; θ ) \ln f(\boldsymbol{x};\theta) lnf(x;θ)对数似然函数,记为 ln ⁡ L ( θ ; x ) \ln L(\theta;\boldsymbol{x}) lnL(θ;x)

若有统计量 θ ^ ≏ θ ^ ( X ) \hat{\theta}\bumpeq \hat{\theta}(\boldsymbol{X}) θ^θ^(X),使得
L ( θ ^ ( x ) ; x ) = sup ⁡ θ ∈ Θ { L ( θ ; x ) } L(\hat{\theta}(\boldsymbol{x});\boldsymbol{x})=\sup_{\theta \in \Theta}\{L(\theta;\boldsymbol{x})\} L(θ^(x);x)=θΘsup{L(θ;x)}
或等价的,使得
ln ⁡ L ( θ ^ ( x ) ; x ) = sup ⁡ θ ∈ Θ { ln ⁡ L ( θ ; x ) } \ln L(\hat{\theta}(\boldsymbol{x});\boldsymbol{x})=\sup_{\theta \in \Theta}\{\ln L(\theta;\boldsymbol{x})\} lnL(θ^(x);x)=θΘsup{lnL(θ;x)}
则称 θ ^ ( X ) \hat{\theta}(\boldsymbol{X}) θ^(X) 为参数 θ \theta θ极大似然估计量(Maximum Likelihood Estimators, MLE)。

例:设总体 X ∼ P ( λ ) , λ > 0 X \sim P(\lambda),\lambda>0 XP(λ),λ>0,试求参数 λ \lambda λ 的极大似然估计量。

解: X X X 的概率函数为
P { X = x } = λ x x ! e − λ , x = 0 , 1 , 2 , . . . P\{X=x\}=\frac{\lambda^x}{x!}e^{-\lambda},\quad x=0,1,2,... P{X=x}=x!λxeλ,x=0,1,2,...
λ \lambda λ 的似然函数为
L ( λ ) = ∏ i = 1 n ( λ x i x i ! e − λ ) = e − n λ λ ∑ i = 1 n x i ∏ i = 1 n ( x i ! ) L(\lambda)=\prod_{i=1}^n (\frac{\lambda^{x_i}}{x_i!}e^{-\lambda})=e^{-n\lambda}\frac{\lambda^{\sum_{i=1}^nx_i}}{\prod_{i=1}^n(x_i!)} L(λ)=i=1n(xi!λxieλ)=ei=1n(xi!)λi=1nxi
对数似然函数为
ln ⁡ L ( λ ) = − n λ + ln ⁡ λ ∑ i = 1 n x i − ∑ i = 1 n ln ⁡ ( x i ! ) \ln L(\lambda)=-n\lambda+\ln \lambda \sum_{i=1}^nx_i-\sum_{i=1}^n \ln(x_i!) lnL(λ)=+lnλi=1nxii=1nln(xi!)

∂ ln ⁡ L ( λ ) ∂ λ = − n + 1 λ ∑ i = 1 n x i = 0 \frac{\partial \ln L(\lambda)}{\partial \lambda}=-n+\frac{1}{\lambda}\sum_{i=1}^nx_i=0 λlnL(λ)=n+λ1i=1nxi=0
该似然方程有唯一解 λ ^ = 1 n ∑ i = 1 n x i = x ˉ \hat{\lambda}=\frac{1}{n}\sum_{i=1}^nx_i=\bar{x} λ^=n1i=1nxi=xˉ,又因
∂ 2 ln ⁡ L ( λ ) ∂ λ 2 ∣ λ = x ˉ < 0 \frac{\partial^2 \ln L(\lambda)}{\partial \lambda^2}|_{\lambda=\bar{x}}<0 λ22lnL(λ)λ=xˉ<0
λ \lambda λ 的极大似然估计量为 λ ^ = X ˉ \hat{\lambda}=\bar{X} λ^=Xˉ

参考文献

[1] 《应用数理统计》,施雨,西安交通大学出版社。

相关文章:

参数估计(一)(点估计)

文章目录 点估计和估计量的求法点估计概念矩估计法极大似然估计法 参考文献 参数估计是数理统计中重要的基本问题之一。通常&#xff0c;称参数的可容许值的全体为参数空间&#xff0c;并记为 Θ \Theta Θ。所谓参数估计就是由样本对总体分布所含的未知参数做出估计。另外&am…...

kubenetes-服务发现和负载均衡

一、服务发布 kubenetes把服务发布至集群内部或者外部&#xff0c;服务的三种不同类型&#xff1a; ClusterlPNodePortLoadBalancer ClusterIP是发布至集群内部的一个虚拟IP,通过负载均衡技术转发到不同的pod中。 NodePort解决的是集群外部访问的问题&#xff0c;用户可能不…...

docker的基本使用以及使用Docker 运行D435i

1.一些基本的指令 1.1 容器 要查看正在运行的容器&#xff1a; sudo docker ps 查看所有的容器&#xff08;包括停止状态的容器&#xff09; sudo docker ps -a 重新命名容器 sudo docker rename <old_name> <new_name> <old_name> 替换为你的容器名称…...

如何看待人工智能行业发展

随着人工智能技术的飞速发展&#xff0c;这个领域的就业前景也日益广阔。人工智能在各行各业都有广泛的应用&#xff0c;包括医疗、金融、制造业、教育等。因此&#xff0c;对于想要追求高薪、高技能职业的人来说&#xff0c;学习人工智能是一个非常有前景的选择。 首先&#x…...

linux中实现自己的bash

&#x1f436;博主主页&#xff1a;ᰔᩚ. 一怀明月ꦿ ❤️‍&#x1f525;专栏系列&#xff1a;线性代数&#xff0c;C初学者入门训练&#xff0c;题解C&#xff0c;C的使用文章&#xff0c;「初学」C &#x1f525;座右铭&#xff1a;“不要等到什么都没有了&#xff0c;才下…...

14 Go的类型转换

概述 在上一节的内容中&#xff0c;我们介绍了Go的错误处理&#xff0c;包括&#xff1a;errors包、返回错误、抛出异常、捕获异常等。在本节中&#xff0c;我们将介绍Go的类型转换。在Go语言中&#xff0c;类型转换是一种将一个值从一种类型转换为另一种类型的过程。类型转换主…...

多线程概述

文章目录 线程是什么线程有什么作用线程和进程的区别多线程相较于进程优势 在Java这个圈子中,多进程用的并不多,因为进程是一个重量级操作,进程是资源分配的基本单位,申请资源是一个比较消耗时间的操作. 线程是什么 线程是一个独立的执行流,可以被独立调度到CPU上执行 线程是…...

AR贴纸特效SDK,无缝贴合的虚拟体验

增强现实&#xff08;AR&#xff09;技术已经成为了企业和个人开发者的新宠。它通过将虚拟元素与现实世界相结合&#xff0c;为用户提供了一种全新的交互体验。然而&#xff0c;如何将AR贴纸完美贴合在人脸的面部&#xff0c;同时支持多张人脸的检测和标点及特效添加&#xff0…...

Leetcode hot 100

双指针 283.移动零 class Solution { public:void moveZeroes(vector<int>& nums) {int cnt 0;for(vector<int>::iterator it nums.begin(); it ! nums.end(); ){if(*it 0) it nums.erase(it),cnt;else it;}while(cnt--){nums.push_back(0);}} }; 11.盛…...

分类预测 | Matlab实现基于SDAE堆叠去噪自编码器的数据分类预测

分类预测 | Matlab实现基于SDAE堆叠去噪自编码器的数据分类预测 目录 分类预测 | Matlab实现基于SDAE堆叠去噪自编码器的数据分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现基于SDAE堆叠去噪自编码器的数据分类预测&#xff08;完整源码和数据) 2.多…...

矩阵运算_矩阵的协方差矩阵/两个矩阵的协方差矩阵_求解详细步骤示例

1. 协方差矩阵定义 在统计学中&#xff0c;方差是用来度量单个随机变量的离散程度&#xff0c;而协方差则一般用来刻画两个随机变量的相似程度。 参考&#xff1a; 带你了解什么是Covariance Matrix协方差矩阵 - 知乎 2. 协方差矩阵计算过程 将输入数据A进行中心化处理得到A…...

100天精通Python(可视化篇)——第108天:Pyecharts绘制多种炫酷词云图参数说明+代码实战

文章目录 专栏导读一、词云图介绍1. 词云图是什么?2. 词云图应用场景?二、参数说明1. 导包2. add函数三、词云库实战1. 基础词云图2. 矩形词云图3. 三角形词云图4. 菱形词云图5. 自定义图片词云图书籍推荐专栏导读 🔥🔥本文已收录于《100天精通Python从入门到就业》:本…...

Spark 平障录

Profile Profile 是最重要的第一环。 利用好 spark UI 和 yarn container log分析业务代码&#xff0c;对其计算代价进行预判建设基准&#xff0c;进行对比&#xff0c;比如application id 进行对比&#xff0c;精确到 job DAG 环节 充分利用 UI Stage 页面 页头 summary&…...

基于一致性算法的微电网分布式控制MATLAB仿真模型

微❤关注“电气仔推送”获得资料&#xff08;专享优惠&#xff09; 本模型主要是基于一致性理论的自适应虚拟阻抗、二次电压补偿以及二次频率补偿&#xff0c;实现功率均分&#xff0c;保证电压以及频率稳定性。 一致性算法 分布式一致性控制主要分为两类&#xff1a;协调同…...

Android 10.0 系统修改usb连接电脑mtp和PTP的显示名称

1.前言 在10.0的产品定制化开发中,在usb模块otg连接电脑,调整为mtp文件传输模式的时候,这时可以在电脑看到手机的内部存储 显示在电脑的盘符中,会有一个mtp名称做盘符,所以为了统一这个名称,就需要修改这个名称,接下来分析下处理的 方法来解决这个问题 2.系统修改usb连…...

飞鼠异地组网工具实战之访问k8s集群内部服务

飞鼠异地组网工具实战之访问k8s集群内部服务 一、飞鼠异地组网工具介绍1.1 飞鼠工具简介1.2 飞鼠工具官网 二、本次实践介绍2.1 本次实践场景描述2.2 本次实践前提2.3 本次实践环境规划 三、检查本地k8s集群环境3.1 检查k8s各节点状态3.2 检查k8s版本3.3 检查k8s系统pod状态 四…...

【Flink】窗口(Window)

窗口理解 窗口&#xff08;Window&#xff09;是处理无界流的关键所在。窗口可以将数据流装入大小有限的“桶”中&#xff0c;再对每个“桶”加以处理。 本文的重心将放在 Flink 如何进行窗口操作以及开发者如何尽可能地利用 Flink 所提供的功能。 对窗口的正确理解&#xff…...

读像火箭科学家一样思考笔记03_第一性原理(上)

1. 思维的两种障碍 1.1. 为什么知识会成为一种缺陷而非一种美德 1.1.1. 知识是一种美德 1.1.2. 知识同样的特质也会把它变成一种缺点 1.1.3. 知识确实是个好东西&#xff0c;但知识的作用应该是给人们提供信息&#xff0c;而不是起约束作用 1.1.4. 知识应该启发智慧&#…...

npm私有云

安装node时npm会自动安装&#xff0c;npm也可以单独安装。 package.json 在使用npm时&#xff0c;package.json文件是非常重要的&#xff0c;因为它包含了关于项目的必要信息&#xff0c;比如名称、版本、依赖项等。在初始化新项目时&#xff0c;通常会使用npm init命令生成一…...

莹莹API管理系统源码附带两套模板

这是一个API后台管理系统的源码&#xff0c;可以自定义添加接口&#xff0c;并自带两个模板。 环境要求 PHP版本要求高于5.6且低于8.0&#xff0c;已测试通过的版本为7.4。 需要安装PHPSG11加密扩展。 已测试&#xff1a;宝塔/主机亲测成功搭建&#xff01; 安装说明 &am…...

Cursor实现用excel数据填充word模版的方法

cursor主页&#xff1a;https://www.cursor.com/ 任务目标&#xff1a;把excel格式的数据里的单元格&#xff0c;按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例&#xff0c;…...

python/java环境配置

环境变量放一起 python&#xff1a; 1.首先下载Python Python下载地址&#xff1a;Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个&#xff0c;然后自定义&#xff0c;全选 可以把前4个选上 3.环境配置 1&#xff09;搜高级系统设置 2…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

Mac软件卸载指南,简单易懂!

刚和Adobe分手&#xff0c;它却总在Library里给你写"回忆录"&#xff1f;卸载的Final Cut Pro像电子幽灵般阴魂不散&#xff1f;总是会有残留文件&#xff0c;别慌&#xff01;这份Mac软件卸载指南&#xff0c;将用最硬核的方式教你"数字分手术"&#xff0…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

DBAPI如何优雅的获取单条数据

API如何优雅的获取单条数据 案例一 对于查询类API&#xff0c;查询的是单条数据&#xff0c;比如根据主键ID查询用户信息&#xff0c;sql如下&#xff1a; select id, name, age from user where id #{id}API默认返回的数据格式是多条的&#xff0c;如下&#xff1a; {&qu…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

算法笔记2

1.字符串拼接最好用StringBuilder&#xff0c;不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf

FTP 客服管理系统 实现kefu123登录&#xff0c;不允许匿名访问&#xff0c;kefu只能访问/data/kefu目录&#xff0c;不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现企业微信功能

1. 开发环境准备 ​​安装DevEco Studio 3.1​​&#xff1a; 从华为开发者官网下载最新版DevEco Studio安装HarmonyOS 5.0 SDK ​​项目配置​​&#xff1a; // module.json5 {"module": {"requestPermissions": [{"name": "ohos.permis…...