分类预测 | Matlab实现基于SDAE堆叠去噪自编码器的数据分类预测
分类预测 | Matlab实现基于SDAE堆叠去噪自编码器的数据分类预测
目录
- 分类预测 | Matlab实现基于SDAE堆叠去噪自编码器的数据分类预测
- 分类效果
- 基本描述
- 程序设计
- 参考资料
分类效果





基本描述
1.Matlab实现基于SDAE堆叠去噪自编码器的数据分类预测(完整源码和数据)
2.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。
3.程序语言为matlab,程序可出分类效果图,损失图,混淆矩阵图,运行环境matlab2018b及以上。
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
5.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行,可在下载区获取数据和程序内容。
程序设计
- 完整程序和数据获取方式1:私信博主回复Matlab实现基于SDAE堆叠去噪自编码器的数据分类预测。
- 完整程序和数据获取方式2:资源处直接下载Matlab实现基于SDAE堆叠去噪自编码器的数据分类预测
%% 定义粒子群算法参数
% N 种群 T 迭代次数
%% 随机初始化种群
D=dim; %粒子维数
c1=1.5; %学习因子1
c2=1.5; %学习因子2
w=0.8; %惯性权重Xmax=ub; %位置最大值
Xmin=lb; %位置最小值
Vmax=ub; %速度最大值
Vmin=lb; %速度最小值
%%
%%%%%%%%%%%%%%%%初始化种群个体(限定位置和速度)%%%%%%%%%%%%%%%%x=rand(N,D).*(Xmax-Xmin)+Xmin;
v=rand(N,D).*(Vmax-Vmin)+Vmin;
%%%%%%%%%%%%%%%%%%初始化个体最优位置和最优值%%%%%%%%%%%%%%%%%%%
p=x;
pbest=ones(N,1);
for i=1:Npbest(i)=fobj(x(i,:));
end
%%%%%%%%%%%%%%%%%%%初始化全局最优位置和最优值%%%%%%%%%%%%%%%%%%
g=ones(1,D);
gbest=inf;
for i=1:Nif(pbest(i)<gbest)g=p(i,:);gbest=pbest(i);end
end
%%%%%%%%%%%按照公式依次迭代直到满足精度或者迭代次数%%%%%%%%%%%%%
for i=1:Tifor j=1:N%%%%%%%%%%%%%%更新个体最优位置和最优值%%%%%%%%%%%%%%%%%if (fobj(x(j,:))) <pbest(j)p(j,:)=x(j,:);pbest(j)=fobj(x(j,:));
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
相关文章:
分类预测 | Matlab实现基于SDAE堆叠去噪自编码器的数据分类预测
分类预测 | Matlab实现基于SDAE堆叠去噪自编码器的数据分类预测 目录 分类预测 | Matlab实现基于SDAE堆叠去噪自编码器的数据分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现基于SDAE堆叠去噪自编码器的数据分类预测(完整源码和数据) 2.多…...
矩阵运算_矩阵的协方差矩阵/两个矩阵的协方差矩阵_求解详细步骤示例
1. 协方差矩阵定义 在统计学中,方差是用来度量单个随机变量的离散程度,而协方差则一般用来刻画两个随机变量的相似程度。 参考: 带你了解什么是Covariance Matrix协方差矩阵 - 知乎 2. 协方差矩阵计算过程 将输入数据A进行中心化处理得到A…...
100天精通Python(可视化篇)——第108天:Pyecharts绘制多种炫酷词云图参数说明+代码实战
文章目录 专栏导读一、词云图介绍1. 词云图是什么?2. 词云图应用场景?二、参数说明1. 导包2. add函数三、词云库实战1. 基础词云图2. 矩形词云图3. 三角形词云图4. 菱形词云图5. 自定义图片词云图书籍推荐专栏导读 🔥🔥本文已收录于《100天精通Python从入门到就业》:本…...
Spark 平障录
Profile Profile 是最重要的第一环。 利用好 spark UI 和 yarn container log分析业务代码,对其计算代价进行预判建设基准,进行对比,比如application id 进行对比,精确到 job DAG 环节 充分利用 UI Stage 页面 页头 summary&…...
基于一致性算法的微电网分布式控制MATLAB仿真模型
微❤关注“电气仔推送”获得资料(专享优惠) 本模型主要是基于一致性理论的自适应虚拟阻抗、二次电压补偿以及二次频率补偿,实现功率均分,保证电压以及频率稳定性。 一致性算法 分布式一致性控制主要分为两类:协调同…...
Android 10.0 系统修改usb连接电脑mtp和PTP的显示名称
1.前言 在10.0的产品定制化开发中,在usb模块otg连接电脑,调整为mtp文件传输模式的时候,这时可以在电脑看到手机的内部存储 显示在电脑的盘符中,会有一个mtp名称做盘符,所以为了统一这个名称,就需要修改这个名称,接下来分析下处理的 方法来解决这个问题 2.系统修改usb连…...
飞鼠异地组网工具实战之访问k8s集群内部服务
飞鼠异地组网工具实战之访问k8s集群内部服务 一、飞鼠异地组网工具介绍1.1 飞鼠工具简介1.2 飞鼠工具官网 二、本次实践介绍2.1 本次实践场景描述2.2 本次实践前提2.3 本次实践环境规划 三、检查本地k8s集群环境3.1 检查k8s各节点状态3.2 检查k8s版本3.3 检查k8s系统pod状态 四…...
【Flink】窗口(Window)
窗口理解 窗口(Window)是处理无界流的关键所在。窗口可以将数据流装入大小有限的“桶”中,再对每个“桶”加以处理。 本文的重心将放在 Flink 如何进行窗口操作以及开发者如何尽可能地利用 Flink 所提供的功能。 对窗口的正确理解ÿ…...
读像火箭科学家一样思考笔记03_第一性原理(上)
1. 思维的两种障碍 1.1. 为什么知识会成为一种缺陷而非一种美德 1.1.1. 知识是一种美德 1.1.2. 知识同样的特质也会把它变成一种缺点 1.1.3. 知识确实是个好东西,但知识的作用应该是给人们提供信息,而不是起约束作用 1.1.4. 知识应该启发智慧&#…...
npm私有云
安装node时npm会自动安装,npm也可以单独安装。 package.json 在使用npm时,package.json文件是非常重要的,因为它包含了关于项目的必要信息,比如名称、版本、依赖项等。在初始化新项目时,通常会使用npm init命令生成一…...
莹莹API管理系统源码附带两套模板
这是一个API后台管理系统的源码,可以自定义添加接口,并自带两个模板。 环境要求 PHP版本要求高于5.6且低于8.0,已测试通过的版本为7.4。 需要安装PHPSG11加密扩展。 已测试:宝塔/主机亲测成功搭建! 安装说明 &am…...
【Kingbase FlySync】命令模式:安装部署同步软件,实现KES到KES实现同步
【Kingbase FlySync】命令模式:安装部署同步软件,实现KES到KES实现同步迁移 概述准备环境目标资源1.测试虚拟机下载地址包含node1,node22.同步工具下载地址3.临时授权下载地址4.ruby工具下载地址5.EXAMv0.11.sql下载地址 实操:同步软件安装部署1.node1准…...
python使用selenium webDriver时 报错
可能原因和解决: 1. python 解释器 ----> 设置 2. 浏览器版本 与 浏览器驱动版本不一致 ----> 安装同一版本的 (下载chromedriver | 谷歌驱动更高版本的测试版) 参考:Python使用Selenium WebDriver的入门介绍及安装教程-CSDN博客 Selenium安…...
【ROS2机器人入门到实战】
ROS2机器人入门到实战教程(鱼香ROS) 写在前面 当前平台文章汇总地址:ROS2机器人从入门到实战获取完整教程及配套资料代码,请关注公众号<鱼香ROS>获取教程配套机器人开发平台:两驱版| 四驱版为方便交流,搭建了机器人技术问…...
Nuxt3框架局部文件引用外部JS/CSS文件的相关配置方法
引入外部JS: <script setup>useHead({script: [ {type: "text/javascript",src: https://cdnjs.cloudflare.com/ajax/libs/jquery/3.7.0/jquery.min.js}]}) </script>useHead只能与组件的setup和生命周期钩子一起使用 如果需要将js放置body区…...
Docker 可视化面板 ——Portainer
Portainer 是一个非常好用的 Docker 可视化面板,可以让你轻松地管理你的 Docker 容器。 官网:Portainer: Container Management Software for Kubernetes and Docker 【Docker系列】超级好用的Docker可视化工具——Portainer_哔哩哔哩_bilibili 环境 …...
Java 教育局民办教育信息服务与监管平台
1) 项目背景 按照《中华人民共和国民办教育促进法》和《中华人民共和国政府信息公开条例》的相关规定,为满足学生和家长、社会各界获取权威信息的需求,着力解决服务老百姓最后一公里问题,达到宣传民办教育和引导家长择校的效果࿰…...
小迪笔记(1)——操作系统文件下载反弹SHELL防火墙绕过
名词解释 POC:验证漏洞存在的代码; EXP:利用漏洞的代码; payload:漏洞利用载荷, shellcode:漏洞代码, webshell:特指网站后门; 木马:强调控制…...
Pytorch D2L Subplots方法对画图、图片处理
问题代码 def show_images(imgs, num_rows, num_cols, titlesNone, scale1.5): #save """绘制图像列表""" figsize (num_cols * scale, num_rows * scale) _, axes d2l.plt.subplots(num_rows, num_cols, figsizefigsize) axes axes.flatten…...
MATLAB算法实战应用案例精讲-【目标检测】YOLOV5(补充篇)
目录 算法原理 YOLOv5数据集训练 软硬件背景: 数据集准备 配置文件 模型训练...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...
springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...
selenium学习实战【Python爬虫】
selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...
dify打造数据可视化图表
一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...
android13 app的触摸问题定位分析流程
一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...
DeepSeek越强,Kimi越慌?
被DeepSeek吊打的Kimi,还有多少人在用? 去年,月之暗面创始人杨植麟别提有多风光了。90后清华学霸,国产大模型六小虎之一,手握十几亿美金的融资。旗下的AI助手Kimi烧钱如流水,单月光是投流就花费2个亿。 疯…...
Win系统权限提升篇UAC绕过DLL劫持未引号路径可控服务全检项目
应用场景: 1、常规某个机器被钓鱼后门攻击后,我们需要做更高权限操作或权限维持等。 2、内网域中某个机器被钓鱼后门攻击后,我们需要对后续内网域做安全测试。 #Win10&11-BypassUAC自动提权-MSF&UACME 为了远程执行目标的exe或者b…...
计算机系统结构复习-名词解释2
1.定向:在某条指令产生计算结果之前,其他指令并不真正立即需要该计算结果,如果能够将该计算结果从其产生的地方直接送到其他指令中需要它的地方,那么就可以避免停顿。 2.多级存储层次:由若干个采用不同实现技术的存储…...
