当前位置: 首页 > news >正文

Consistency Models 阅读笔记

简介

Diffusion models需要多步迭代采样才能生成一张图片,这导致生成速度很慢。一致性模型(Consistency models)的提出是为了加速生成过程。
Consistency models可以直接一步采样就生成图片,但是也允许进行多步采样来提高生成的质量。
Consistency models可以从预训练的扩散模型蒸馏得到,也可以作为独立的生成模型从头训练得到。

PF ODE

论文中考虑的PF ODE(Probability Flow Ordinary Differential Equation)形式如下:
d x t d t = − t s ϕ ( x t , t ) \frac{d \mathbf x_t}{d t} = -ts_\phi(\mathbf x_t, t) dtdxt=tsϕ(xt,t)其中 s ϕ ( x t , t ) ≈ ∇ log ⁡ p t ( x ) s_\phi(\mathbf x_t, t) \approx \nabla\log p_t(\mathbf x) sϕ(xt,t)logpt(x)是分数函数, t ∈ [ 0 , T ] t \in [0, T] t[0,T]
从初始分布 x ^ T ∼ N ( 0 , T 2 I ) \mathbf{\hat x_T} \sim \mathcal N(\mathbf 0, T^2 \mathbf I) x^TN(0,T2I)中采样,然后逆向求解ODE,得到的 x ^ 0 \mathbf{\hat x_0} x^0是近似服从数据分布的样本。值得注意的是,为了保证数值稳定,在本文中用 x ^ ϵ \mathbf{\hat x_\epsilon} x^ϵ当做最后的近似样本, ϵ \epsilon ϵ是一个接近0的小正数。

一致性模型(Consistency models)

给定一个PF ODE(Probability Flow Ordinary Differential Equation) { x t } t ∈ [ ϵ , T ] \{\mathbf x_t\}_{t\in[\epsilon, T]} {xt}t[ϵ,T],一致性函数(consistency function)被定义为 f : ( x t , t ) → x ϵ f:(\mathbf x_t, t) \rightarrow \mathbf x_\epsilon f:(xt,t)xϵ,其中 ϵ \epsilon ϵ是一个接近0的小正数,是ODE求解器停止的位置。一致性函数具有self-consistency性质,即对于PF ODE轨迹上的任意点输出都是一样的。一致性模型 f θ f_\theta fθ的是从数据中估计的一致性函数。

给一个训练好的一致性模型 f θ ( ⋅ , ⋅ ) f_\theta(\cdot, \cdot) fθ(,),可以通过一致性模型一步生成了结果:首先从初始分布中采样 x ^ T ∼ N ( 0 , T 2 I ) \mathbf{\hat x_T} \sim \mathcal N(\mathbf 0, T^2 \mathbf I) x^TN(0,T2I),然后用一致性模型计算 x ^ ϵ = f θ ( x ^ T , T ) \mathbf{\hat x_\epsilon} = f_\theta(\mathbf{\hat x_T}, T) x^ϵ=fθ(x^T,T)。也可以调用一致性模型多次生成更准确的结果,如Algorithm 1所示,迭代的去噪和添加噪声。
在这里插入图片描述
Consistency models的训练算法有两种,一种是从预训练的扩散模型蒸馏(Algorithm 2),一种是作为独立的生成模型从头训练(Algorithm 3)。
在这里插入图片描述
感觉一致性模型和EDM1有共同之处,在每一步中都想恢复出 x 0 \mathbf x_0 x0,但是一致性模型训练时优化的目标是self-consistency性质,通过self-consistency性质来在保证每一步中都能直接恢复出 x 0 \mathbf x_0 x0


  1. 《Elucidating the design space of diffusion-based generative models》 ↩︎

相关文章:

Consistency Models 阅读笔记

简介 Diffusion models需要多步迭代采样才能生成一张图片,这导致生成速度很慢。一致性模型(Consistency models)的提出是为了加速生成过程。 Consistency models可以直接一步采样就生成图片,但是也允许进行多步采样来提高生成的质…...

杭电oj 2034 人见人爱A-B C语言

此处的c和a指向同一块内存空间&#xff0c;改变c就是改变a&#xff0c;反之亦然&#xff0c;此处是为了方便看这么写的&#xff0c;如果不想c和a指向同一空间请分别开辟空间&#xff08;即不如此写camalloc&#xff09; #include<stdio.h> #include<stdlib.h>int …...

springboot(ssm大学生成绩管理系统 成绩管理平台Java(codeLW)

springboot(ssm大学生成绩管理系统 成绩管理平台Java(code&LW) 开发语言&#xff1a;Java 框架&#xff1a;ssm/springboot vue JDK版本&#xff1a;JDK1.8&#xff08;或11&#xff09; 服务器&#xff1a;tomcat 数据库&#xff1a;mysql 5.7&#xff08;或8.0&…...

SOME/IP 协议介绍(五)指南

指南&#xff08;信息性&#xff09; 选择传输协议 SOME/IP直接支持互联网上使用最广泛的两种传输协议&#xff1a;用户数据报协议&#xff08;UDP&#xff09;和传输控制协议&#xff08;TCP&#xff09;。UDP是一种非常简洁的传输协议&#xff0c;仅支持最重要的功能&#…...

Python调用企微机器人: 发送常用格式汇总

企微接口文档 发送应用消息 - 接口文档 - 企业微信开发者中心 发送格式 应用支持推送文本、图片、视频、文件、图文等类型。 ~~~以下列举常用格式 示例~~~ 1.发送文本 代码如下&#xff1a; def sendtxt_robotmsg(self):# 正式keywx_key "xx"wx_webhookurl htt…...

论文阅读——DiffusionDet

在目标检测上使用扩散模型 前向过程&#xff1a;真实框-->随机框 后向过程&#xff1a;随机框-->真实框 前向过程&#xff1a; 一般一张图片真实框的数目不同&#xff0c;填补到同一的N个框&#xff0c;填补方法可以是重复真实框&#xff0c;填补和图片大小一样的框&a…...

elmenetui表格二次封装包含查询框和分页

<!--dataList: 表格数据columnList: 表头字段 宽度minWidth使用slotName字段: 需要对列数据进行处理&#xff0c;不写prop字段&#xff0c;使用slotName字段btnText<String>: 按钮字段btnIcon<String>: 按钮的iconbtnEvent: 按钮事件btnType: 按钮类型getHeigh…...

【机器学习Python实战】线性回归

&#x1f680;个人主页&#xff1a;为梦而生~ 关注我一起学习吧&#xff01; &#x1f4a1;专栏&#xff1a;机器学习python实战 欢迎订阅&#xff01;后面的内容会越来越有意思~ ⭐内容说明&#xff1a;本专栏主要针对机器学习专栏的基础内容进行python的实现&#xff0c;部分…...

做外贸这么久,为什么一直做不好?

很多外贸业务员在开发客户过程中&#xff0c;总感觉自己做了很多事情&#xff0c;聊了很多客户&#xff0c;但却总是拿不到单子。 其实&#xff0c;这是由于缺乏对采购商心理的认识程度&#xff0c;没有换位思考&#xff0c;该做的事没做&#xff0c;不该做的事却忙得忘乎所以&…...

IPv4数据报格式

IPv4是IP协议的第四个版本(版本1-3和版本5都未曾使用过)IP地址不能反映任何有关主机位置的地理信息以前还有个逆地址解析协议RAPR(Reverse APR)&#xff0c;它的作用是使只知道自己MAC地址的主机能通过RAPR找到其IP地址&#xff0c;而现在的DHCP(Dynamic Host Configuration Pr…...

搭建网关服务器实现DHCP自动分配、HTTP服务和免密登录

目录 一. 实验要求 二. 实验准备 三. 实验过程 1. 网关服务器新建网卡并改为仅主机模式 2. 修改新建网卡IP配置文件并重启服务 3. 搭建网关服务器的dhcp服务 4. 修改server2网卡配置文件重启服务并效验 5. 设置主机1的网络连接为仅主机模式 6. 给server2和网关服务器之…...

【18年扬大真题】给定有m个整数的递增有序数组a和有n个整数的递减有序数组b,将a数组和b数组归并为递增有序的数组c

【18年扬大真题】 给定有m个整数的递增有序数组a和有n个整数的递减有序数组b&#xff0c; 将a数组和b数组归并为递增有序的数组c。 void Merge(int arr[],int m ,int brr[],int n,int crr[]) {int i 0;int j n-1;int k 0;while(i < m&&j > 0) {if (arr[i] &l…...

图片叠加_图片压缩

图片叠加 try {/* 1 读取第一张图片*/File fileOne new File("1.png");BufferedImage imageFirst ImageIO.read(fileOne);/* 2读取第二张图片 */File fileTwo new File("2.png");BufferedImage imageSecond ImageIO.read(fileTwo);//创建一个最底层画…...

Mybatis-Plus《学习笔记 22版尚硅谷 》——感谢【尚硅谷】官方文档

Mybatis-Plus《学习笔记 22版尚硅谷 》 一、MyBatis-Plus1.简介2.特性3.支持数据库4.框架结构5.官方地址 二、入门案例1.开发环境2.建库建表3.创建工程4.配置编码5.测试查询 三、增删改查1.BaseMapper<T>2.调用Mapper层实现CRUD2.1 插入2.2 删除a、根据ID删除数据b、根据…...

git安装后报git: ‘remote-https‘ is not a git command. See ‘git --help‘.

1. 问题说明 使用的是linux系统&#xff0c;采用编译安装的方式进行安装&#xff0c;安装完成clone项目后提示“git: ‘remote-https’ is not a git command. See ‘git --help’.” 2. 问题解决 需要安装1个额外的库&#xff1a;libcurl4-openssl-de sudo apt-get install …...

场景交互与场景漫游-交运算与对象选取(8-1)

交运算与对象选取 在面对大规模的场景管理时&#xff0c;场景图形的交运算和图形对象的拾取变成了一项基本工作。OSG作为一个场景管理系统&#xff0c;自然也实现了场景图形的交运算&#xff0c;交运算主要封装在osgUtil 工具中在OSG中&#xff0c;osgUtil是一个非常强有力的工…...

Vue中动态Class实战

效果展示 需求 想实现一个假如有5个div块&#xff0c;默认都是灰色&#xff0c;鼠标悬浮到哪个div上&#xff0c;那个div就显示为黑色。 具体的实现业务逻辑可根据这个进行演变 设计 通过动态 class 类名来实现&#xff0c;实现鼠标悬浮到div时动态绑定class 版本 Vue 3.…...

B站短视频如何去水印?一键解析下载B站视频!

在浏览B站视频时&#xff0c;我们有时会遇到带有水印的场景。这些水印可能会干扰我们对视频内容的观看体验&#xff0c;特别是在全屏观看时。此外&#xff0c;当我们想要保存或分享这些视频时&#xff0c;水印也会成为一种障碍。因此&#xff0c;去除水印的需求就变得非常迫切。…...

最大子段和(分治法+动态规划法)

求最大子段和 此类问题通常是求数列中连续子段和的最大值&#xff0c;经典的股票问题就是考察的这个思想及拓展。 例题&#xff1a; AcWing:1054. 股票买卖 Leetcode:53. 最大子数组和 分治法O(nlogn) 此类问题时分适合采用分治思想&#xff0c;因为所有子区间 [ s t a r t …...

内置函数和消息传递API

消息传递范式 消息函数、聚合函数与更新函数 消息函数接受一个参数 edges&#xff0c;这是一个 EdgeBatch 的实例&#xff0c; 在消息传递时&#xff0c;它被DGL在内部生成以表示一批边。edges 有 src、 dst 和 data 共3个成员属性&#xff0c; 分别用于访问源节点、目标节点…...

【JavaEE】-- HTTP

1. HTTP是什么&#xff1f; HTTP&#xff08;全称为"超文本传输协议"&#xff09;是一种应用非常广泛的应用层协议&#xff0c;HTTP是基于TCP协议的一种应用层协议。 应用层协议&#xff1a;是计算机网络协议栈中最高层的协议&#xff0c;它定义了运行在不同主机上…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils&#xff1a; ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类&#xff0c;封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz&#xff0c;先构建任务的 JobD…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载&#xff0c;仅供自学使用&#xff0c;侵权必究&#xff0c;如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)

引言 工欲善其事&#xff0c;必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后&#xff0c;我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集&#xff0c;就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...

安卓基础(Java 和 Gradle 版本)

1. 设置项目的 JDK 版本 方法1&#xff1a;通过 Project Structure File → Project Structure... (或按 CtrlAltShiftS) 左侧选择 SDK Location 在 Gradle Settings 部分&#xff0c;设置 Gradle JDK 方法2&#xff1a;通过 Settings File → Settings... (或 CtrlAltS)…...

【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验

Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...

深入浅出Diffusion模型:从原理到实践的全方位教程

I. 引言&#xff1a;生成式AI的黎明 – Diffusion模型是什么&#xff1f; 近年来&#xff0c;生成式人工智能&#xff08;Generative AI&#xff09;领域取得了爆炸性的进展&#xff0c;模型能够根据简单的文本提示创作出逼真的图像、连贯的文本&#xff0c;乃至更多令人惊叹的…...

保姆级【快数学会Android端“动画“】+ 实现补间动画和逐帧动画!!!

目录 补间动画 1.创建资源文件夹 2.设置文件夹类型 3.创建.xml文件 4.样式设计 5.动画设置 6.动画的实现 内容拓展 7.在原基础上继续添加.xml文件 8.xml代码编写 (1)rotate_anim (2)scale_anim (3)translate_anim 9.MainActivity.java代码汇总 10.效果展示 逐帧…...