当前位置: 首页 > news >正文

Consistency Models 阅读笔记

简介

Diffusion models需要多步迭代采样才能生成一张图片,这导致生成速度很慢。一致性模型(Consistency models)的提出是为了加速生成过程。
Consistency models可以直接一步采样就生成图片,但是也允许进行多步采样来提高生成的质量。
Consistency models可以从预训练的扩散模型蒸馏得到,也可以作为独立的生成模型从头训练得到。

PF ODE

论文中考虑的PF ODE(Probability Flow Ordinary Differential Equation)形式如下:
d x t d t = − t s ϕ ( x t , t ) \frac{d \mathbf x_t}{d t} = -ts_\phi(\mathbf x_t, t) dtdxt=tsϕ(xt,t)其中 s ϕ ( x t , t ) ≈ ∇ log ⁡ p t ( x ) s_\phi(\mathbf x_t, t) \approx \nabla\log p_t(\mathbf x) sϕ(xt,t)logpt(x)是分数函数, t ∈ [ 0 , T ] t \in [0, T] t[0,T]
从初始分布 x ^ T ∼ N ( 0 , T 2 I ) \mathbf{\hat x_T} \sim \mathcal N(\mathbf 0, T^2 \mathbf I) x^TN(0,T2I)中采样,然后逆向求解ODE,得到的 x ^ 0 \mathbf{\hat x_0} x^0是近似服从数据分布的样本。值得注意的是,为了保证数值稳定,在本文中用 x ^ ϵ \mathbf{\hat x_\epsilon} x^ϵ当做最后的近似样本, ϵ \epsilon ϵ是一个接近0的小正数。

一致性模型(Consistency models)

给定一个PF ODE(Probability Flow Ordinary Differential Equation) { x t } t ∈ [ ϵ , T ] \{\mathbf x_t\}_{t\in[\epsilon, T]} {xt}t[ϵ,T],一致性函数(consistency function)被定义为 f : ( x t , t ) → x ϵ f:(\mathbf x_t, t) \rightarrow \mathbf x_\epsilon f:(xt,t)xϵ,其中 ϵ \epsilon ϵ是一个接近0的小正数,是ODE求解器停止的位置。一致性函数具有self-consistency性质,即对于PF ODE轨迹上的任意点输出都是一样的。一致性模型 f θ f_\theta fθ的是从数据中估计的一致性函数。

给一个训练好的一致性模型 f θ ( ⋅ , ⋅ ) f_\theta(\cdot, \cdot) fθ(,),可以通过一致性模型一步生成了结果:首先从初始分布中采样 x ^ T ∼ N ( 0 , T 2 I ) \mathbf{\hat x_T} \sim \mathcal N(\mathbf 0, T^2 \mathbf I) x^TN(0,T2I),然后用一致性模型计算 x ^ ϵ = f θ ( x ^ T , T ) \mathbf{\hat x_\epsilon} = f_\theta(\mathbf{\hat x_T}, T) x^ϵ=fθ(x^T,T)。也可以调用一致性模型多次生成更准确的结果,如Algorithm 1所示,迭代的去噪和添加噪声。
在这里插入图片描述
Consistency models的训练算法有两种,一种是从预训练的扩散模型蒸馏(Algorithm 2),一种是作为独立的生成模型从头训练(Algorithm 3)。
在这里插入图片描述
感觉一致性模型和EDM1有共同之处,在每一步中都想恢复出 x 0 \mathbf x_0 x0,但是一致性模型训练时优化的目标是self-consistency性质,通过self-consistency性质来在保证每一步中都能直接恢复出 x 0 \mathbf x_0 x0


  1. 《Elucidating the design space of diffusion-based generative models》 ↩︎

相关文章:

Consistency Models 阅读笔记

简介 Diffusion models需要多步迭代采样才能生成一张图片,这导致生成速度很慢。一致性模型(Consistency models)的提出是为了加速生成过程。 Consistency models可以直接一步采样就生成图片,但是也允许进行多步采样来提高生成的质…...

杭电oj 2034 人见人爱A-B C语言

此处的c和a指向同一块内存空间&#xff0c;改变c就是改变a&#xff0c;反之亦然&#xff0c;此处是为了方便看这么写的&#xff0c;如果不想c和a指向同一空间请分别开辟空间&#xff08;即不如此写camalloc&#xff09; #include<stdio.h> #include<stdlib.h>int …...

springboot(ssm大学生成绩管理系统 成绩管理平台Java(codeLW)

springboot(ssm大学生成绩管理系统 成绩管理平台Java(code&LW) 开发语言&#xff1a;Java 框架&#xff1a;ssm/springboot vue JDK版本&#xff1a;JDK1.8&#xff08;或11&#xff09; 服务器&#xff1a;tomcat 数据库&#xff1a;mysql 5.7&#xff08;或8.0&…...

SOME/IP 协议介绍(五)指南

指南&#xff08;信息性&#xff09; 选择传输协议 SOME/IP直接支持互联网上使用最广泛的两种传输协议&#xff1a;用户数据报协议&#xff08;UDP&#xff09;和传输控制协议&#xff08;TCP&#xff09;。UDP是一种非常简洁的传输协议&#xff0c;仅支持最重要的功能&#…...

Python调用企微机器人: 发送常用格式汇总

企微接口文档 发送应用消息 - 接口文档 - 企业微信开发者中心 发送格式 应用支持推送文本、图片、视频、文件、图文等类型。 ~~~以下列举常用格式 示例~~~ 1.发送文本 代码如下&#xff1a; def sendtxt_robotmsg(self):# 正式keywx_key "xx"wx_webhookurl htt…...

论文阅读——DiffusionDet

在目标检测上使用扩散模型 前向过程&#xff1a;真实框-->随机框 后向过程&#xff1a;随机框-->真实框 前向过程&#xff1a; 一般一张图片真实框的数目不同&#xff0c;填补到同一的N个框&#xff0c;填补方法可以是重复真实框&#xff0c;填补和图片大小一样的框&a…...

elmenetui表格二次封装包含查询框和分页

<!--dataList: 表格数据columnList: 表头字段 宽度minWidth使用slotName字段: 需要对列数据进行处理&#xff0c;不写prop字段&#xff0c;使用slotName字段btnText<String>: 按钮字段btnIcon<String>: 按钮的iconbtnEvent: 按钮事件btnType: 按钮类型getHeigh…...

【机器学习Python实战】线性回归

&#x1f680;个人主页&#xff1a;为梦而生~ 关注我一起学习吧&#xff01; &#x1f4a1;专栏&#xff1a;机器学习python实战 欢迎订阅&#xff01;后面的内容会越来越有意思~ ⭐内容说明&#xff1a;本专栏主要针对机器学习专栏的基础内容进行python的实现&#xff0c;部分…...

做外贸这么久,为什么一直做不好?

很多外贸业务员在开发客户过程中&#xff0c;总感觉自己做了很多事情&#xff0c;聊了很多客户&#xff0c;但却总是拿不到单子。 其实&#xff0c;这是由于缺乏对采购商心理的认识程度&#xff0c;没有换位思考&#xff0c;该做的事没做&#xff0c;不该做的事却忙得忘乎所以&…...

IPv4数据报格式

IPv4是IP协议的第四个版本(版本1-3和版本5都未曾使用过)IP地址不能反映任何有关主机位置的地理信息以前还有个逆地址解析协议RAPR(Reverse APR)&#xff0c;它的作用是使只知道自己MAC地址的主机能通过RAPR找到其IP地址&#xff0c;而现在的DHCP(Dynamic Host Configuration Pr…...

搭建网关服务器实现DHCP自动分配、HTTP服务和免密登录

目录 一. 实验要求 二. 实验准备 三. 实验过程 1. 网关服务器新建网卡并改为仅主机模式 2. 修改新建网卡IP配置文件并重启服务 3. 搭建网关服务器的dhcp服务 4. 修改server2网卡配置文件重启服务并效验 5. 设置主机1的网络连接为仅主机模式 6. 给server2和网关服务器之…...

【18年扬大真题】给定有m个整数的递增有序数组a和有n个整数的递减有序数组b,将a数组和b数组归并为递增有序的数组c

【18年扬大真题】 给定有m个整数的递增有序数组a和有n个整数的递减有序数组b&#xff0c; 将a数组和b数组归并为递增有序的数组c。 void Merge(int arr[],int m ,int brr[],int n,int crr[]) {int i 0;int j n-1;int k 0;while(i < m&&j > 0) {if (arr[i] &l…...

图片叠加_图片压缩

图片叠加 try {/* 1 读取第一张图片*/File fileOne new File("1.png");BufferedImage imageFirst ImageIO.read(fileOne);/* 2读取第二张图片 */File fileTwo new File("2.png");BufferedImage imageSecond ImageIO.read(fileTwo);//创建一个最底层画…...

Mybatis-Plus《学习笔记 22版尚硅谷 》——感谢【尚硅谷】官方文档

Mybatis-Plus《学习笔记 22版尚硅谷 》 一、MyBatis-Plus1.简介2.特性3.支持数据库4.框架结构5.官方地址 二、入门案例1.开发环境2.建库建表3.创建工程4.配置编码5.测试查询 三、增删改查1.BaseMapper<T>2.调用Mapper层实现CRUD2.1 插入2.2 删除a、根据ID删除数据b、根据…...

git安装后报git: ‘remote-https‘ is not a git command. See ‘git --help‘.

1. 问题说明 使用的是linux系统&#xff0c;采用编译安装的方式进行安装&#xff0c;安装完成clone项目后提示“git: ‘remote-https’ is not a git command. See ‘git --help’.” 2. 问题解决 需要安装1个额外的库&#xff1a;libcurl4-openssl-de sudo apt-get install …...

场景交互与场景漫游-交运算与对象选取(8-1)

交运算与对象选取 在面对大规模的场景管理时&#xff0c;场景图形的交运算和图形对象的拾取变成了一项基本工作。OSG作为一个场景管理系统&#xff0c;自然也实现了场景图形的交运算&#xff0c;交运算主要封装在osgUtil 工具中在OSG中&#xff0c;osgUtil是一个非常强有力的工…...

Vue中动态Class实战

效果展示 需求 想实现一个假如有5个div块&#xff0c;默认都是灰色&#xff0c;鼠标悬浮到哪个div上&#xff0c;那个div就显示为黑色。 具体的实现业务逻辑可根据这个进行演变 设计 通过动态 class 类名来实现&#xff0c;实现鼠标悬浮到div时动态绑定class 版本 Vue 3.…...

B站短视频如何去水印?一键解析下载B站视频!

在浏览B站视频时&#xff0c;我们有时会遇到带有水印的场景。这些水印可能会干扰我们对视频内容的观看体验&#xff0c;特别是在全屏观看时。此外&#xff0c;当我们想要保存或分享这些视频时&#xff0c;水印也会成为一种障碍。因此&#xff0c;去除水印的需求就变得非常迫切。…...

最大子段和(分治法+动态规划法)

求最大子段和 此类问题通常是求数列中连续子段和的最大值&#xff0c;经典的股票问题就是考察的这个思想及拓展。 例题&#xff1a; AcWing:1054. 股票买卖 Leetcode:53. 最大子数组和 分治法O(nlogn) 此类问题时分适合采用分治思想&#xff0c;因为所有子区间 [ s t a r t …...

内置函数和消息传递API

消息传递范式 消息函数、聚合函数与更新函数 消息函数接受一个参数 edges&#xff0c;这是一个 EdgeBatch 的实例&#xff0c; 在消息传递时&#xff0c;它被DGL在内部生成以表示一批边。edges 有 src、 dst 和 data 共3个成员属性&#xff0c; 分别用于访问源节点、目标节点…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求&#xff0c;设计一个邮件发奖的小系统&#xff0c; 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式&#xff08;Decorator Pattern&#xff09;允许向一个现有的对象添加新的功能&#xff0c;同时又不改变其…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索&#xff08;基于物理空间 广播范围&#xff09;2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

动态 Web 开发技术入门篇

一、HTTP 协议核心 1.1 HTTP 基础 协议全称 &#xff1a;HyperText Transfer Protocol&#xff08;超文本传输协议&#xff09; 默认端口 &#xff1a;HTTP 使用 80 端口&#xff0c;HTTPS 使用 443 端口。 请求方法 &#xff1a; GET &#xff1a;用于获取资源&#xff0c;…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...

深入浅出Diffusion模型:从原理到实践的全方位教程

I. 引言&#xff1a;生成式AI的黎明 – Diffusion模型是什么&#xff1f; 近年来&#xff0c;生成式人工智能&#xff08;Generative AI&#xff09;领域取得了爆炸性的进展&#xff0c;模型能够根据简单的文本提示创作出逼真的图像、连贯的文本&#xff0c;乃至更多令人惊叹的…...

【FTP】ftp文件传输会丢包吗?批量几百个文件传输,有一些文件没有传输完整,如何解决?

FTP&#xff08;File Transfer Protocol&#xff09;本身是一个基于 TCP 的协议&#xff0c;理论上不会丢包。但 FTP 文件传输过程中仍可能出现文件不完整、丢失或损坏的情况&#xff0c;主要原因包括&#xff1a; ✅ 一、FTP传输可能“丢包”或文件不完整的原因 原因描述网络…...