当前位置: 首页 > news >正文

数字引领,智慧赋能|袋鼠云与易知微共同亮相2023智慧港口大会

2023年10月19日,由中国港口协会、中国交通通信信息中心、天津港(集团)有限公司主办,中国港口协会智慧港口专业委员会、《港口科技》杂志社等单位承办的以“数字引领 智慧赋能”为主题的“2023智慧港口大会”在天津顺利召开。

图片

袋鼠云和易知微受邀参与本次天津智慧港口大会,携“数字孪生智慧港口解决方案”共同亮相。

大会现场,袋鼠云和易知微展出的数字孪生智慧港口解决方案吸引了众多与会人员广泛关注,全国各地与会专家嘉宾及港口行业相关企业单位纷纷驻足于袋鼠云展台前进行垂询、指导并展开热烈交流。

图片

图片

在这里插入图片描述

易知微数字孪生智慧港口解决方案以港口设备数据、车辆数据等为基础,针对地块-港区-设备的全要素场景,从智慧港区管理、港区作业动态拟真、港区智能操作、集卡智慧调度、车路协同一体化、智能仓储管理溜达方向的应用,实现对港区数据的实时分析呈现,洞察港口运行态势,杜绝港口安全隐患,为管理层提供辅助决策支撑。
图片

图片

图片

在这里插入图片描述

袋鼠云和易知微紧跟国家政策步伐,不断探索智慧港口建设新模式,助力港口实现数字化转型升级。目前已为国内近10家头部枢纽港口集团提供咨询、产品、交付等一体化解决方案。
作为数字孪生智慧港口核心能力输出者,未来袋鼠云和易知微将继续发挥自身优势,加大在港口企业数字化转型方面的探索和实践力度,更广泛地赋能港口企业,助力智慧港口建设!
关注我,了解更多可视化资讯,搜索进入易知微了解更多
https://easyv.cloud/?t=csdn

相关文章:

数字引领,智慧赋能|袋鼠云与易知微共同亮相2023智慧港口大会

2023年10月19日,由中国港口协会、中国交通通信信息中心、天津港(集团)有限公司主办,中国港口协会智慧港口专业委员会、《港口科技》杂志社等单位承办的以“数字引领 智慧赋能”为主题的“2023智慧港口大会”在天津顺利召开。 袋鼠…...

星火模型(Spark)的langchain 实现

星火模型的langchain实现 测试已通过,希望有所帮助。 使用前请先安装环境: pip install githttps://github.com/shell-nlp/spark-ai-python.git注意: 一定要使用上面方式安装spark库,因对官方的库做了改动。官方的库已经长时间不…...

python运算符重载之构造函数和迭代器

1 python运算符重载之构造函数和迭代器 python运算符重载是在类方法中拦截内置操作-当类的实例使用内置操作时,pytho自动调用对应方法,并且返回操作结果。 NO#描述1拦截运算运算符重载拦截内置操作,比如打印、函数调用、点号运算、表达式运…...

【数据处理】Python:实现求条件分布函数 | 求平均值方差和协方差 | 求函数函数期望值的函数 | 概率论

猛戳订阅! 👉 《一起玩蛇》🐍 💭 写在前面:本章我们将通过 Python 手动实现条件分布函数的计算,实现求平均值,方差和协方差函数,实现求函数期望值的函数。部署的测试代码放到文后了,运行所需环境 python version >= 3.6,numpy >= 1.15,nltk >= 3.4,tqd…...

new/delete 和malloc/free的区别

C中: 创建单个数据空间: char *ch new char; delete ch; ch NULL; 创建多个数据空间: char *ch new char[4]; delete [] ch; ch NULL; C语言中: 创建单个数据空间: char *ch malloc(sizeof(char)); fre…...

Linux程序设计(上)

系列文章目录 文章目录 系列文章目录前言一、unix, linux, GNU, POSIXLinux程序 二、shellshell语法1.变量2.语句 函数命令命令的执行dialog工具-- 三、文件操作1. Linux 文件结构2. 系统调用和设备驱动程序3. 库函数4. 底层文件访问5. 标准I/O库6.格式化输入输出7. 文件和目录…...

mysql面试题——存储引擎相关

一:MySQL 支持哪些存储引擎? MySQL支持多种存储引擎,比如InnoDB,MyISAM, MySQL大于等于5.5之后,默认存储引擎是InnoDB 二:InnoDB 和 MyISAM 有什么区别? InnoDB支持事务,MyISAM不支持InnoD…...

趣学python编程 (四、数据结构和算法介绍)

数据结构和算法在编程中非常重要。数据结构是组织和存储数据的方式,而算法是解决问题的方法和步骤。你要挑战的蓝桥杯,实际也是在设计算法解决问题。其实各种编程语言都只是工具,而程序的核心数据结构算法。犹如练武,数据结构和算…...

使用Pandas进行时间重采样,充分挖掘数据价值

大家好,时间序列数据蕴含着很大价值,通过重采样技术可以提升原始数据的表现形式。本文将介绍数据重采样方法和工具,提升数据可视化技巧。 在进行时间数据可视化时,数据重采样是至关重要且非常有用的,它支持控制数据的…...

Django(九、choices参数的使用、多对多表的三种创建方式、Ajax技术)

文章目录 一、choices参数choices参数的用法choices 参数用法总结 二、MVC与MTV模式1.MVC2.MTV 三、多对多的三种创建方式1.全自动创建2.纯手动创建半自动创建 四、Django与Ajax1.什么是Ajax常见的场景Ajax案例 一、choices参数 在没有用到choices参数之前,我们在D…...

德语B级SampleAcademy

德语B级 一, 反身代词(1)A 主语和宾语一致(2)D 双宾语,主语与直接宾语不一致(3), 补充单词(4)真反身代词(5)假反身代词(6)真假反身代词(7)相互反身(8)非反身#反身#相互反身 二,Nomen…...

vue3自定义hooks

获取dom的id属性 index.ts import { onMounted } from "vue" type option {el: string }export default function(option:option):Promise<{name: string}> {return new Promise((resolve)>{onMounted(()>{const dom:HTMLElement document.querySele…...

Consistency Models 阅读笔记

简介 Diffusion models需要多步迭代采样才能生成一张图片&#xff0c;这导致生成速度很慢。一致性模型&#xff08;Consistency models&#xff09;的提出是为了加速生成过程。 Consistency models可以直接一步采样就生成图片&#xff0c;但是也允许进行多步采样来提高生成的质…...

杭电oj 2034 人见人爱A-B C语言

此处的c和a指向同一块内存空间&#xff0c;改变c就是改变a&#xff0c;反之亦然&#xff0c;此处是为了方便看这么写的&#xff0c;如果不想c和a指向同一空间请分别开辟空间&#xff08;即不如此写camalloc&#xff09; #include<stdio.h> #include<stdlib.h>int …...

springboot(ssm大学生成绩管理系统 成绩管理平台Java(codeLW)

springboot(ssm大学生成绩管理系统 成绩管理平台Java(code&LW) 开发语言&#xff1a;Java 框架&#xff1a;ssm/springboot vue JDK版本&#xff1a;JDK1.8&#xff08;或11&#xff09; 服务器&#xff1a;tomcat 数据库&#xff1a;mysql 5.7&#xff08;或8.0&…...

SOME/IP 协议介绍(五)指南

指南&#xff08;信息性&#xff09; 选择传输协议 SOME/IP直接支持互联网上使用最广泛的两种传输协议&#xff1a;用户数据报协议&#xff08;UDP&#xff09;和传输控制协议&#xff08;TCP&#xff09;。UDP是一种非常简洁的传输协议&#xff0c;仅支持最重要的功能&#…...

Python调用企微机器人: 发送常用格式汇总

企微接口文档 发送应用消息 - 接口文档 - 企业微信开发者中心 发送格式 应用支持推送文本、图片、视频、文件、图文等类型。 ~~~以下列举常用格式 示例~~~ 1.发送文本 代码如下&#xff1a; def sendtxt_robotmsg(self):# 正式keywx_key "xx"wx_webhookurl htt…...

论文阅读——DiffusionDet

在目标检测上使用扩散模型 前向过程&#xff1a;真实框-->随机框 后向过程&#xff1a;随机框-->真实框 前向过程&#xff1a; 一般一张图片真实框的数目不同&#xff0c;填补到同一的N个框&#xff0c;填补方法可以是重复真实框&#xff0c;填补和图片大小一样的框&a…...

elmenetui表格二次封装包含查询框和分页

<!--dataList: 表格数据columnList: 表头字段 宽度minWidth使用slotName字段: 需要对列数据进行处理&#xff0c;不写prop字段&#xff0c;使用slotName字段btnText<String>: 按钮字段btnIcon<String>: 按钮的iconbtnEvent: 按钮事件btnType: 按钮类型getHeigh…...

【机器学习Python实战】线性回归

&#x1f680;个人主页&#xff1a;为梦而生~ 关注我一起学习吧&#xff01; &#x1f4a1;专栏&#xff1a;机器学习python实战 欢迎订阅&#xff01;后面的内容会越来越有意思~ ⭐内容说明&#xff1a;本专栏主要针对机器学习专栏的基础内容进行python的实现&#xff0c;部分…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook&#xff0c;用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途&#xff0c;下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

在Ubuntu中设置开机自动运行(sudo)指令的指南

在Ubuntu系统中&#xff0c;有时需要在系统启动时自动执行某些命令&#xff0c;特别是需要 sudo权限的指令。为了实现这一功能&#xff0c;可以使用多种方法&#xff0c;包括编写Systemd服务、配置 rc.local文件或使用 cron任务计划。本文将详细介绍这些方法&#xff0c;并提供…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

蓝桥杯 冶炼金属

原题目链接 &#x1f527; 冶炼金属转换率推测题解 &#x1f4dc; 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V&#xff0c;是一个正整数&#xff0c;表示每 V V V 个普通金属 O O O 可以冶炼出 …...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...

LLMs 系列实操科普(1)

写在前面&#xff1a; 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容&#xff0c;原视频时长 ~130 分钟&#xff0c;以实操演示主流的一些 LLMs 的使用&#xff0c;由于涉及到实操&#xff0c;实际上并不适合以文字整理&#xff0c;但还是决定尽量整理一份笔…...