当前位置: 首页 > news >正文

LangChain 2模块化prompt template并用streamlit生成网站 实现给动物取名字

上一节实现了 LangChain 实现给动物取名字,
实际上每次给不同的动物取名字,还得修改源代码,这周就用模块化template来实现。

1. 添加promptTemplate

from langchain.llms import OpenAI  # 导入Langchain库中的OpenAI模块
from langchain.prompts import PromptTemplate  # 导入Langchain库中的PromptTemplate模块
from langchain.chains import LLMChain  # 导入Langchain库中的LLMChain模块
from dotenv import load_dotenv  # 导入dotenv库,用于加载环境变量load_dotenv()  # 加载.env文件中的环境变量def generate_pet_name(animal_type):llm = OpenAI(temperature=0.7)  # 创建OpenAI模型的实例,设置temperature参数为0.7以调整生成的多样性# 创建PromptTemplate实例,用于构造输入提示prompt_template_name = PromptTemplate(input_variables=['animal_type'],template="I have a {animal_type} pet and I want a cool name for it. Suggest me five cool names for my pet.")name_chain = LLMChain(llm=llm, prompt=prompt_template_name)  # 创建LLMChain实例,将OpenAI模型和PromptTemplate传入response = name_chain({'animal_type': animal_type})  # 使用LLMChain生成宠物名字return response  # 返回生成的名字# 当该脚本作为主程序运行时,执行以下代码
if __name__ == "__main__":print(generate_pet_name('cat'))  # 调用generate_pet_name函数,并打印返回的结果

运行和输出

$ python main.py
{'animal_type': 'cat', 'text': '\n\n1. Shadow \n2. Midnight \n3. Storm \n4. Luna \n5. Tiger'}
(.venv) zgpeace on zgpeaces-MBP in ~/Workspace/LLM/langchain-llm-app(1m|feature/prompt)
$ python main.py
{'animal_type': 'cow', 'text': '\n\n1. Milky\n2. Mooly\n3. Bessie\n4. Daisy\n5. Buttercup'}
(.venv) zgpeace on zgpeaces-MBP in ~/Workspace/LLM/langchain-llm-app(4m|feature/prompt*)

在这里插入图片描述

2. 添加新的参数pte_color

from langchain.llms import OpenAI  # 导入Langchain库中的OpenAI模块
from langchain.prompts import PromptTemplate  # 导入Langchain库中的PromptTemplate模块
from langchain.chains import LLMChain  # 导入Langchain库中的LLMChain模块
from dotenv import load_dotenv  # 导入dotenv库,用于加载环境变量load_dotenv()  # 加载.env文件中的环境变量def generate_pet_name(animal_type, pet_color):llm = OpenAI(temperature=0.7)  # 创建OpenAI模型的实例,设置temperature参数为0.7以调整生成的多样性# 创建PromptTemplate实例,用于构造输入提示prompt_template_name = PromptTemplate(input_variables=['animal_type', 'pet_color'],template="I have a {animal_type} pet and I want a cool name for it. Suggest me five cool names for my pet.")name_chain = LLMChain(llm=llm, prompt=prompt_template_name)  # 创建LLMChain实例,将OpenAI模型和PromptTemplate传入response = name_chain({'animal_type': animal_type, 'pet_color': pet_color})  # 使用LLMChain生成宠物名字return response  # 返回生成的名字# 当该脚本作为主程序运行时,执行以下代码
if __name__ == "__main__":print(generate_pet_name('cow', 'black'))  # 调用generate_pet_name函数,并打印返回的结果

运行结果

$ python main.py
{'animal_type': 'cow', 'pet_color': 'black', 'text': '\n\n1. Daisy\n2. Maverick\n3. Barnaby\n4. Bessie\n5. Bossy'}
(.venv) zgpeace on zgpeaces-MBP in ~/Workspace/LLM/langchain-llm-app(6m|feature/prompt*)

3. 重构代码

把逻辑放到langchain_helper.py, 清空main.py代码

4. 用Streamlit 生成网页

main.py 代码实现

import langchain_helper as lch
import streamlit as stst.title("Pets name generator")

add path environment in .zshrc

export PATH="/Library/Frameworks/Python.framework/Versions/3.10/bin:$PATH"source .zshrc
zgpeaces-MBP at ~/Workspace/LLM/langchain-llm-app ±(feature/prompt) ✗ ❯ streamlit run main.py       👋 Welcome to Streamlit!If you’d like to receive helpful onboarding emails, news, offers, promotions,and the occasional swag, please enter your email address below. Otherwise,leave this field blank.Email:  You can find our privacy policy at https://streamlit.io/privacy-policySummary:- This open source library collects usage statistics.- We cannot see and do not store information contained inside Streamlit apps,such as text, charts, images, etc.- Telemetry data is stored in servers in the United States.- If you'd like to opt out, add the following to ~/.streamlit/config.toml,creating that file if necessary:[browser]gatherUsageStats = falseYou can now view your Streamlit app in your browser.Local URL: http://localhost:8501Network URL: http://192.168.50.10:8501For better performance, install the Watchdog module:$ xcode-select --install$ pip install watchdog

http://localhost:8501/
在这里插入图片描述

5. Streamlit 生成网页输入跟Langchain互动获取名字

main.py

import langchain_helper as lch  # 导入名为langchain_helper的模块,并使用别名lch
import streamlit as st  # 导入Streamlit库,并使用别名stst.title("Pets name generator")  # 在Streamlit应用中设置标题# 通过侧边栏选择宠物类型
animal_type = st.sidebar.selectbox("Select animal type", ["dog", "cat", "cow", "horse", "pig", "sheep"])# 根据宠物类型设置宠物颜色,使用侧边栏的文本区域输入
if animal_type in ['dog', 'cat', 'cow', 'horse', 'pig', 'sheep']:pet_color = st.sidebar.text_area(label=f"What color is your {animal_type}?", max_chars=15)
else:pet_color = st.sidebar.text_area(label="What color is your pet?", max_chars=15)# 如果有输入颜色,调用generate_pet_name函数生成宠物名字并显示
if pet_color:response = lch.generate_pet_name(animal_type, pet_color)st.text(response['pet_name'])

langchain_hepler.py 实现

from langchain.llms import OpenAI  # 导入Langchain库中的OpenAI模块
from langchain.prompts import PromptTemplate  # 导入Langchain库中的PromptTemplate模块
from langchain.chains import LLMChain  # 导入Langchain库中的LLMChain模块
from dotenv import load_dotenv  # 导入dotenv库,用于加载环境变量load_dotenv()  # 加载.env文件中的环境变量def generate_pet_name(animal_type, pet_color):llm = OpenAI(temperature=0.7)  # 创建OpenAI模型的实例,设置temperature参数为0.7以调整生成的多样性# 创建PromptTemplate实例,用于构造输入提示prompt_template_name = PromptTemplate(input_variables=['animal_type', 'pet_color'],template="I have a {animal_type} pet and I want a cool name for it. Suggest me five cool names for my pet.")name_chain = LLMChain(llm=llm, prompt=prompt_template_name, output_key='pet_name')  # 创建LLMChain实例,将OpenAI模型和PromptTemplate传入response = name_chain({'animal_type': animal_type, 'pet_color': pet_color})  # 使用LLMChain生成宠物名字return response  # 返回生成的名字# 当该脚本作为主程序运行时,执行以下代码
if __name__ == "__main__":print(generate_pet_name('cow', 'black'))  # 调用generate_pet_name函数,并打印返回的结果

在这里插入图片描述

参考

  • https://github.com/zgpeace/pets-name-langchain/tree/feature/prompt
  • https://youtu.be/lG7Uxts9SXs?si=H1CISGkoYiKRSF5V
  • Streamlit - https://streamlit.io

相关文章:

LangChain 2模块化prompt template并用streamlit生成网站 实现给动物取名字

上一节实现了 LangChain 实现给动物取名字, 实际上每次给不同的动物取名字,还得修改源代码,这周就用模块化template来实现。 1. 添加promptTemplate from langchain.llms import OpenAI # 导入Langchain库中的OpenAI模块 from langchain.p…...

linux nas

挂载到本地 mkdir -p /mnt/mountnasdir mount -t nfs 192.168.62:/cnas_id10086_vol10010_dev/ /mnt/mountnasdir...

控制您的音乐、视频等媒体内容

跨多个 Chrome 标签页播放音乐或声音 在计算机上打开 Chrome 。在标签页中播放音乐、视频或其他任何有声内容。您可以停留在该标签页上,也可以转到别处。要控制声音,请在右上角点击“媒体控件”图标 。您可暂停播放、转到下一首歌曲/下一个视频&#xf…...

xlua源码分析(三)C#访问lua的映射

xlua源码分析(三)C#访问lua的映射 上一节我们主要分析了lua call C#的无wrap实现。同时我们在第一节里提到过,C#使用LuaTable类持有lua层的table,以及使用Action委托持有lua层的function。而在xlua的官方文档中,推荐使…...

2023 极术通讯-汽车“新四化”路上,需要一片安全山海

导读:极术社区推出极术通讯,引入行业媒体和技术社区、咨询机构优质内容,定期分享产业技术趋势与市场应用热点。 芯方向 【Armv9】-动态TrustZone技术的介绍 动态 TrustZone 是提供多租户安全媒体 pipeline 的绝佳工具。完全不受操作系统、虚…...

Spring Boot接口设计规范

接口参数处理及统一结果响应 1、接口参数处理 1、普通参数接收 这种参数接收方式是比较常见的,由于是GET请求方式,所以在传参时直接在路径后拼接参数和参数值即可。 例如:localhost:8080/api/product/list?key1value1&key2value2 /…...

美创科技与南京大数据安全技术有限公司达成战略合作

近日,美创科技与南京大数据安全技术有限公司正式签署战略合作协议,优势力量共享、共拓共创共赢。 美创科技CEO柳遵梁、副总裁罗亮亮、副总裁王利强,南京大数据安全技术有限公司总经理潘杰、市场总监刘莉莎、销售总监王皓月、技术总监薛松等出…...

2.4路由日志管理

2.4路由/日志管理 一、静态路由和动态路由 路由器在转发数据时,需要现在路由表中查找相应的路由,有三种途径 (1)直连路由:路由器自动添加和自己直连的路由 (2)静态路由:管理员手动…...

归并排序详解:递归实现+非递归实现(图文详解+代码)

文章目录 归并排序1.递归实现2.非递归实现3.海量数据的排序问题 归并排序 时间复杂度:O ( N * logzN ) 每一层都是N,有log2N层空间复杂度:O(N),每个区间都会申请内存,最后申请的数组大小和array大小相同稳定…...

DataBinding原理

1、MainActivity首先使用DataBindingUtil.setContentView设置布局文件activity_main.xml。 2、随后,经过一系列函数调用,ActivityMainBindingImpl对象最终会实例化,并与activity_main.xml进行绑定。 3、实例化后的ActivityMainBindingImpl对象…...

docker更换国内源

docker更换国内源 1、编辑Docker配置文件 在终端中执行以下命令,编辑Docker配置文件: vi /etc/docker/daemon.json2、添加更新源 在打开的配置文件中,添加以下内容: {"registry-mirrors": ["https://hub-mirror…...

【咖啡品牌分析】Google Maps数据采集咖啡市场数据分析区域分析热度分布分析数据抓取瑞幸星巴克

引言 咖啡作为一种受欢迎的饮品,已经成为我们生活中不可或缺的一部分。随着国内外咖啡品牌的涌入,新加坡咖啡市场愈加多元化和竞争激烈。 本文对新加坡咖啡市场进行了全面的品牌门店数占比分析,聚焦于热门品牌的地理分布、投资价值等。通过…...

【Java】异常处理(一)

🌺个人主页:Dawn黎明开始 🎀系列专栏:Java ⭐每日一句:什么都不做,才会来不及 📢欢迎大家:关注🔍点赞👍评论📝收藏⭐️ 文章目录 📋前…...

【高级程序设计】Week2-4Week3-1 JavaScript

一、Javascript 1. What is JS 定义A scripting language used for client-side web development.作用 an implementation of the ECMAScript standard defines the syntax/characteristics of the language and a basic set of commonly used objects such as Number, Date …...

PHP笔记-->读取JSON数据以及获取读取到的JSON里边的数据

由于我以前是写C#的,现在学一下PHP, 在读取json数据的时候被以前的思维卡住了。 以前用C#读取的时候,是先定义一个数组,将反序列化的json存到数组里面,在从数组里面获取jaon中的“data”数据。 其实PHP的思路也是一样…...

【Spring Boot】如何集成Redis

在pom.xml文件中导入spring data redis的maven坐标。 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId></dependency> 在application.yml文件中加入redis相关配置。 spr…...

Elasticsearch备份与还原:使用elasticdump

在数据管理的世界里&#xff0c;备份和还原数据是重中之重的日常工作&#xff0c;特别是对于Elasticsearch这样的强大而复杂的搜索引擎。备份不仅可以用于灾难恢复&#xff0c;还可以在数据迁移、测试或者升级等场景中发挥重要作用。 在本博客中&#xff0c;我们将会重点介绍如…...

给大伙讲个笑话:阿里云服务器开了安全组防火墙还是无法访问到服务

铺垫&#xff1a; 某天我在阿里云上买了一个服务器&#xff0c;买完我就通过MobaXterm进行了ssh&#xff08;这个软件是会保存登录信息的&#xff09; 故事开始&#xff1a; 过了n天之后我想用这个服务器来部署流媒体服务&#xff0c;咔咔两下就部署好了流媒体服务器&#x…...

js:react使用zustand实现状态管理

文档 https://www.npmjs.com/package/zustandhttps://github.com/pmndrs/zustandhttps://docs.pmnd.rs/zustand/getting-started/introduction 安装 npm install zustand示例 定义store store/index.js import { create } from "zustand";export const useCount…...

vue3+vite+SQL.js 读取db3文件数据

前言&#xff1a;好久没写博客了&#xff0c;最近一直在忙&#xff0c;没时间梳理。最近遇到一个需求是读取本地SQLite文件&#xff0c;还是花费了点时间才实现&#xff0c;没怎么看到vite方面写这个的文章&#xff0c;现在分享出来完整流程。 1.pnpm下载SQL.js(什么都可以下)…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周&#xff0c;有很多同学在写期末Java web作业时&#xff0c;运行tomcat出现乱码问题&#xff0c;经过多次解决与研究&#xff0c;我做了如下整理&#xff1a; 原因&#xff1a; IDEA本身编码与tomcat的编码与Windows编码不同导致&#xff0c;Windows 系统控制台…...

线程同步:确保多线程程序的安全与高效!

全文目录&#xff1a; 开篇语前序前言第一部分&#xff1a;线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分&#xff1a;synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分&#xff…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06&#xff08;十亿美元&#xff09;。漏洞扫描服务市场行业预计将从 2024 年的 3.48&#xff08;十亿美元&#xff09;增长到 2032 年的 9.54&#xff08;十亿美元&#xff09;。预测期内漏洞扫描服务市场 CAGR&#xff08;增长率&…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...

前端高频面试题2:浏览器/计算机网络

本专栏相关链接 前端高频面试题1&#xff1a;HTML/CSS 前端高频面试题2&#xff1a;浏览器/计算机网络 前端高频面试题3&#xff1a;JavaScript 1.什么是强缓存、协商缓存&#xff1f; 强缓存&#xff1a; 当浏览器请求资源时&#xff0c;首先检查本地缓存是否命中。如果命…...

Linux基础开发工具——vim工具

文章目录 vim工具什么是vimvim的多模式和使用vim的基础模式vim的三种基础模式三种模式的初步了解 常用模式的详细讲解插入模式命令模式模式转化光标的移动文本的编辑 底行模式替换模式视图模式总结 使用vim的小技巧vim的配置(了解) vim工具 本文章仍然是继续讲解Linux系统下的…...