当前位置: 首页 > news >正文

深度学习乳腺癌分类 计算机竞赛

文章目录

  • 1 前言
  • 2 前言
  • 3 数据集
    • 3.1 良性样本
    • 3.2 病变样本
  • 4 开发环境
  • 5 代码实现
    • 5.1 实现流程
    • 5.2 部分代码实现
      • 5.2.1 导入库
      • 5.2.2 图像加载
      • 5.2.3 标记
      • 5.2.4 分组
      • 5.2.5 构建模型训练
  • 6 分析指标
    • 6.1 精度,召回率和F1度量
    • 6.2 混淆矩阵
  • 7 结果和结论
  • 8 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习乳腺癌分类

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 前言

乳腺癌是全球第二常见的女性癌症。2012年,它占所有新癌症病例的12%,占所有女性癌症病例的25%。

当乳腺细胞生长失控时,乳腺癌就开始了。这些细胞通常形成一个肿瘤,通常可以在x光片上直接看到或感觉到有一个肿块。如果癌细胞能生长到周围组织或扩散到身体的其他地方,那么这个肿瘤就是恶性的。

以下是报告:

  • 大约八分之一的美国女性(约12%)将在其一生中患上浸润性乳腺癌。
  • 2019年,美国预计将有268,600例新的侵袭性乳腺癌病例,以及62,930例新的非侵袭性乳腺癌。
  • 大约85%的乳腺癌发生在没有乳腺癌家族史的女性身上。这些发生是由于基因突变,而不是遗传突变
  • 如果一名女性的一级亲属(母亲、姐妹、女儿)被诊断出患有乳腺癌,那么她患乳腺癌的风险几乎会增加一倍。在患乳腺癌的女性中,只有不到15%的人的家人被诊断出患有乳腺癌。

3 数据集

该数据集为学长实验室数据集。

搜先这是图像二分类问题。我把数据拆分如图所示


dataset train
benign
b1.jpg
b2.jpg
//
malignant
m1.jpg
m2.jpg
// validation
benign
b1.jpg
b2.jpg
//
malignant
m1.jpg
m2.jpg
//…

训练文件夹在每个类别中有1000个图像,而验证文件夹在每个类别中有250个图像。

3.1 良性样本

在这里插入图片描述
在这里插入图片描述

3.2 病变样本

在这里插入图片描述
在这里插入图片描述

4 开发环境

  • scikit-learn
  • keras
  • numpy
  • pandas
  • matplotlib
  • tensorflow

5 代码实现

5.1 实现流程

完整的图像分类流程可以形式化如下:

我们的输入是一个由N个图像组成的训练数据集,每个图像都有相应的标签。

然后,我们使用这个训练集来训练分类器,来学习每个类。

最后,我们通过让分类器预测一组从未见过的新图像的标签来评估分类器的质量。然后我们将这些图像的真实标签与分类器预测的标签进行比较。

5.2 部分代码实现

5.2.1 导入库

import json
import math
import os
import cv2
from PIL import Image
import numpy as np
from keras import layers
from keras.applications import DenseNet201
from keras.callbacks import Callback, ModelCheckpoint, ReduceLROnPlateau, TensorBoard
from keras.preprocessing.image import ImageDataGenerator
from keras.utils.np_utils import to_categorical
from keras.models import Sequential
from keras.optimizers import Adam
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import cohen_kappa_score, accuracy_score
import scipy
from tqdm import tqdm
import tensorflow as tf
from keras import backend as K
import gc
from functools import partial
from sklearn import metrics
from collections import Counter
import json
import itertools

5.2.2 图像加载

接下来,我将图像加载到相应的文件夹中。

def Dataset_loader(DIR, RESIZE, sigmaX=10):IMG = []read = lambda imname: np.asarray(Image.open(imname).convert("RGB"))for IMAGE_NAME in tqdm(os.listdir(DIR)):PATH = os.path.join(DIR,IMAGE_NAME)_, ftype = os.path.splitext(PATH)if ftype == ".png":img = read(PATH)img = cv2.resize(img, (RESIZE,RESIZE))IMG.append(np.array(img))return IMGbenign_train = np.array(Dataset_loader('data/train/benign',224))
malign_train = np.array(Dataset_loader('data/train/malignant',224))
benign_test = np.array(Dataset_loader('data/validation/benign',224))
malign_test = np.array(Dataset_loader('data/validation/malignant',224))

5.2.3 标记

之后,我创建了一个全0的numpy数组,用于标记良性图像,以及全1的numpy数组,用于标记恶性图像。我还重新整理了数据集,并将标签转换为分类格式。

benign_train_label = np.zeros(len(benign_train))
malign_train_label = np.ones(len(malign_train))
benign_test_label = np.zeros(len(benign_test))
malign_test_label = np.ones(len(malign_test))X_train = np.concatenate((benign_train, malign_train), axis = 0)
Y_train = np.concatenate((benign_train_label, malign_train_label), axis = 0)
X_test = np.concatenate((benign_test, malign_test), axis = 0)
Y_test = np.concatenate((benign_test_label, malign_test_label), axis = 0)s = np.arange(X_train.shape[0])
np.random.shuffle(s)
X_train = X_train[s]
Y_train = Y_train[s]s = np.arange(X_test.shape[0])
np.random.shuffle(s)
X_test = X_test[s]
Y_test = Y_test[s]Y_train = to_categorical(Y_train, num_classes= 2)
Y_test = to_categorical(Y_test, num_classes= 2)

5.2.4 分组

然后我将数据集分成两组,分别具有80%和20%图像的训练集和测试集。让我们看一些样本良性和恶性图像

x_train, x_val, y_train, y_val = train_test_split(X_train, Y_train, test_size=0.2, random_state=11
)w=60
h=40
fig=plt.figure(figsize=(15, 15))
columns = 4
rows = 3for i in range(1, columns*rows +1):ax = fig.add_subplot(rows, columns, i)if np.argmax(Y_train[i]) == 0:ax.title.set_text('Benign')else:ax.title.set_text('Malignant')plt.imshow(x_train[i], interpolation='nearest')
plt.show()

在这里插入图片描述

5.2.5 构建模型训练

我使用的batch值为16。batch是深度学习中最重要的超参数之一。我更喜欢使用更大的batch来训练我的模型,因为它允许从gpu的并行性中提高计算速度。但是,众所周知,batch太大会导致泛化效果不好。在一个极端下,使用一个等于整个数据集的batch将保证收敛到目标函数的全局最优。但是这是以收敛到最优值较慢为代价的。另一方面,使用更小的batch已被证明能够更快的收敛到好的结果。这可以直观地解释为,较小的batch允许模型在必须查看所有数据之前就开始学习。使用较小的batch的缺点是不能保证模型收敛到全局最优。因此,通常建议从小batch开始,通过训练慢慢增加batch大小来加快收敛速度。

我还做了一些数据扩充。数据扩充的实践是增加训练集规模的一种有效方式。训练实例的扩充使网络在训练过程中可以看到更加多样化,仍然具有代表性的数据点。

然后,我创建了一个数据生成器,自动从文件夹中获取数据。Keras为此提供了方便的python生成器函数。

BATCH_SIZE = 16train_generator = ImageDataGenerator(zoom_range=2,  # 设置范围为随机缩放rotation_range = 90,horizontal_flip=True,  # 随机翻转图片vertical_flip=True,  # 随机翻转图片)

下一步是构建模型。这可以通过以下3个步骤来描述:

  • 我使用DenseNet201作为训练前的权重,它已经在Imagenet比赛中训练过了。设置学习率为0.0001。

  • 在此基础上,我使用了globalaveragepooling层和50%的dropout来减少过拟合。

  • 我使用batch标准化和一个以softmax为激活函数的含有2个神经元的全连接层,用于2个输出类的良恶性。

  • 我使用Adam作为优化器,使用二元交叉熵作为损失函数。

    def build_model(backbone, lr=1e-4):model = Sequential()model.add(backbone)model.add(layers.GlobalAveragePooling2D())model.add(layers.Dropout(0.5))model.add(layers.BatchNormalization())model.add(layers.Dense(2, activation='softmax'))model.compile(loss='binary_crossentropy',optimizer=Adam(lr=lr),metrics=['accuracy'])return modelresnet = DenseNet201(weights='imagenet',include_top=False,input_shape=(224,224,3)
    )model = build_model(resnet ,lr = 1e-4)
    model.summary()
    

让我们看看每个层中的输出形状和参数。

在这里插入图片描述
在训练模型之前,定义一个或多个回调函数很有用。非常方便的是:ModelCheckpoint和ReduceLROnPlateau。

  • ModelCheckpoint:当训练通常需要多次迭代并且需要大量的时间来达到一个好的结果时,在这种情况下,ModelCheckpoint保存训练过程中的最佳模型。

  • ReduceLROnPlateau:当度量停止改进时,降低学习率。一旦学习停滞不前,模型通常会从将学习率降低2-10倍。这个回调函数会进行监视,如果在’patience’(耐心)次数下,模型没有任何优化的话,学习率就会降低。

在这里插入图片描述

该模型我训练了60个epoch。

learn_control = ReduceLROnPlateau(monitor='val_acc', patience=5,verbose=1,factor=0.2, min_lr=1e-7)filepath="weights.best.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')history = model.fit_generator(train_generator.flow(x_train, y_train, batch_size=BATCH_SIZE),steps_per_epoch=x_train.shape[0] / BATCH_SIZE,epochs=20,validation_data=(x_val, y_val),callbacks=[learn_control, checkpoint]
)

6 分析指标

评价模型性能最常用的指标是精度。然而,当您的数据集中只有2%属于一个类(恶性),98%属于其他类(良性)时,错误分类的分数就没有意义了。你可以有98%的准确率,但仍然没有发现恶性病例,即预测的时候全部打上良性的标签,这是一个不好的分类器。

history_df = pd.DataFrame(history.history)
history_df[['loss', 'val_loss']].plot()history_df = pd.DataFrame(history.history)
history_df[['acc', 'val_acc']].plot()

在这里插入图片描述

6.1 精度,召回率和F1度量

为了更好地理解错误分类,我们经常使用以下度量来更好地理解真正例(TP)、真负例(TN)、假正例(FP)和假负例(FN)。

精度反映了被分类器判定的正例中真正的正例样本的比重。

召回率反映了所有真正为正例的样本中被分类器判定出来为正例的比例。

F1度量是准确率和召回率的调和平均值。

在这里插入图片描述

6.2 混淆矩阵

混淆矩阵是分析误分类的一个重要指标。矩阵的每一行表示预测类中的实例,而每一列表示实际类中的实例。对角线表示已正确分类的类。这很有帮助,因为我们不仅知道哪些类被错误分类,还知道它们为什么被错误分类。

from sklearn.metrics import classification_report
classification_report( np.argmax(Y_test, axis=1), np.argmax(Y_pred_tta, axis=1))from sklearn.metrics import confusion_matrixdef plot_confusion_matrix(cm, classes,normalize=False,title='Confusion matrix',cmap=plt.cm.Blues):if normalize:cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]print("Normalized confusion matrix")else:print('Confusion matrix, without normalization')print(cm)plt.imshow(cm, interpolation='nearest', cmap=cmap)plt.title(title)plt.colorbar()tick_marks = np.arange(len(classes))plt.xticks(tick_marks, classes, rotation=55)plt.yticks(tick_marks, classes)fmt = '.2f' if normalize else 'd'thresh = cm.max() / 2.for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):plt.text(j, i, format(cm[i, j], fmt),horizontalalignment="center",color="white" if cm[i, j] > thresh else "black")plt.ylabel('True label')plt.xlabel('Predicted label')plt.tight_layout()cm = confusion_matrix(np.argmax(Y_test, axis=1), np.argmax(Y_pred, axis=1))cm_plot_label =['benign', 'malignant']
plot_confusion_matrix(cm, cm_plot_label, title ='Confusion Metrix for Skin Cancer')

在这里插入图片描述

7 结果和结论

在这里插入图片描述
在这个博客中,学长我演示了如何使用卷积神经网络和迁移学习从一组显微图像中对良性和恶性乳腺癌进行分类,希望对大家有所帮助。

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

相关文章:

深度学习乳腺癌分类 计算机竞赛

文章目录 1 前言2 前言3 数据集3.1 良性样本3.2 病变样本 4 开发环境5 代码实现5.1 实现流程5.2 部分代码实现5.2.1 导入库5.2.2 图像加载5.2.3 标记5.2.4 分组5.2.5 构建模型训练 6 分析指标6.1 精度,召回率和F1度量6.2 混淆矩阵 7 结果和结论8 最后 1 前言 &…...

【Python百宝箱】掌握Python Web开发三剑客:Flask、Django、FastAPI一网打尽

前言 在当今互联网时代,Web应用的开发变得愈发重要和复杂。选择一个合适的Web框架,掌握安全性与认证、数据库与ORM库、前端框架与交互、测试与调试工具等关键知识点,是每个Web开发者都必须面对的挑战。本文将带你深入了解三个流行的Python W…...

【人工智能时代的刑法体系与责任主体概述】

第一节:引言 随着科技的快速发展,人工智能 (Artificial Intelligence, AI) 正日益成为我们生活中不可或缺的一部分。从自动驾驶汽车到语音助手,从智能家居到金融机器人,AI 的广泛应用正不断改变着我们的生活方式和社会结构。然而…...

透视maven打包编译正常,intellj idea编译失败问题的本质

前言 maven多模块类型的项目,在Java的中大型应用中非常常见, 在 module 很多的情况,经常会出现各种各样的编辑依赖错误问题,今天记录一种比较常见的 case : A 子模块依赖 B 子模块,在 Terminal 上终端上 …...

npm报错

npm报错 npm ERR! Fix the upstream dependency conflict, or retry npm ERR! this command with --force or --legacy-peer-deps npm ERR! to accept an incorrect (and potentially broken) dependency resolution. npm ERR! npm ERR! npm ERR! For a full report s…...

【FFmpeg实战】ffmpeg播放器-音视频解码流程

音视频介绍 音视频解码流程 FFmpeg解码的数据结构说明 AVFormatContext:封装格式上下文结构体,全局结构体,保存了视频文件封装格式相关信息AVInputFormat:每种封装格式,对应一个该结构体AVStream[0]:视频文件中每个视频&#xff…...

基于SSM的高校毕业选题管理系统设计与实现

末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:采用JSP技术开发 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目&#x…...

一个简单的Oracle Redaction实验

本实验包含了: 简单的Oracle Redaction演示针对指定用户的Redaction 实验环境 假设有一个19c多租户数据库,PDB名为orclpdb1。 我们将在orclpdb1中建立2个用户: redact_user: redact管理员schema_user: schema用户 基础实验 首先进入数…...

getchar函数的功能有哪些

getchar函数是C语言标准库中的一个函数,主要用于从标准输入(通常是键盘)获取一个字符。它的功能包括: 从标准输入获取一个字符:getchar函数会等待用户输入一个字符,然后将其返回给程序。可以通过控制台输入…...

信息机房监控系统(动环辅助监控系统)

信息机房监控系统是一个综合性的系统,用于对机房的所有设备及其环境进行集中监控和管理。这种系统主要针对机房的各个子系统进行监控,包括动力系统、环境系统、消防系统、保安系统、网络系统等。 依托电易云-智慧电力物联网,以下是信息机房监…...

最强英文开源模型Llama2架构与技术细节探秘

prerequisite: 最强英文开源模型LLaMA架构探秘,从原理到源码 Llama2 Meta AI于2023年7月19日宣布开源LLaMA模型的二代版本Llama2,并在原来基础上允许免费用于研究和商用。 作为LLaMA的延续和升级,Llama2的训练数据扩充了40%,达到…...

编程刷题网站以及实用型网站推荐

1、牛客网在线编程 牛客网在线编程https://www.nowcoder.com/exam/oj?page1&tab%E8%AF%AD%E6%B3%95%E7%AF%87&topicId220 2、力扣 力扣https://leetcode.cn/problemset/all/ 3、练码 练码https://www.lintcode.com/ 4、PTA | 程序设计类实验辅助教学平台 PTA | 程…...

基于STC12C5A60S2系列1T 8051单片机的SPI总线器件数模芯片TLC5615实现数模转换应用

基于STC12C5A60S2系列1T 8051单片的SPI总线器件数模芯片TLC5615实现数模转换应用 STC12C5A60S2系列1T 8051单片机管脚图STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式及配置STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式介绍SPI总线器件数模芯片TLC5615介绍通过按…...

【并发编程】Synchronized的使用

📫作者简介:小明java问道之路,2022年度博客之星全国TOP3,专注于后端、中间件、计算机底层、架构设计演进与稳定性建设优化,文章内容兼具广度、深度、大厂技术方案,对待技术喜欢推理加验证,就职于…...

【Python】Python基础

文章目录 一、字面值常量和表达式二、变量2.1 定义变量2.2 变量的命名规则2.3 变量的类型2.4 不同类型大小2.5 动态类型 三、注释四、输入与输出五、运算符5.1 算术运算符5.2 关系运算符5.3 逻辑运算符5.4 赋值运算符 一、字面值常量和表达式 print(1 2 * 3) # 7 print(1 2 …...

gitlab环境准备

1.准备环境 gitlab只支持linux系统,本人在虚拟机下使用Ubuntu作为操作系统,gitlab镜像要使用和操作系统版本对应的版本,(ubuntu18.04,gitlab-ce_13.2.3-ce.0_amd64 .deb) book100ask:/$ lsb_release -a No LSB modules are available. Dist…...

Apache Doris (五十四): Doris Join类型 - Bucket Shuffle Join

🏡 个人主页:IT贫道_大数据OLAP体系技术栈,Apache Doris,Clickhouse 技术-CSDN博客 🚩 私聊博主:加入大数据技术讨论群聊,获取更多大数据资料。 🔔 博主个人B栈地址:豹哥教你大数据的个人空间-豹哥教你大数据个人主页-哔哩哔哩视频 目录...

【AI】行业消息精选和分析(23-11-20)

技术发展 🎨 LCM即时绘画,体验所见所得: - LCM LoRA支持即时绘图生成,体验直观。 - 在线体验地址提供直接访问。 - 清华大学SimianLuo开发,加速稳定扩散模型运行。 💊 VM Pill:可吞咽装置追踪生…...

Matplotlib实现Label及Title都在下方的最佳姿势

Matplotlib实现Label及Title都在下方的最佳姿势 1. 问题背景2. 基本思想(可以不看)3. 方法封装4. 调用实例5. 总结6. 起飞 1. 问题背景 用python绘制下面这种图的时候,一般用xlable作为子图的标题,这是因为plt.title()方法绘制的…...

使用 uWSGI 部署 Django 应用详解

概要 部署 Django 应用到生产环境是一个至关重要的步骤,其中选择合适的 WSGI 服务器对于确保应用的稳定性和性能至关重要。uWSGI 是一个流行的选择,它不仅高效、轻量,还非常灵活。本文将详细介绍如何使用 uWSGI 来部署 Django 应用&#xff…...

MyBatis在注解中使用动态查询

以前为了使用注解并在注解中融入动态查询&#xff0c;会使用Provider。后来发现只要加入"<script>包含动态查询的SQL语句</script>"就可以了。 例如&#xff1a; Select("<script>" "select v.*,u.avatar,u.nickname from videos…...

百云齐鲁 | 云轴科技ZStack成功实践精选(山东)

山东省作为我国重要的工业基地和北方地区经济发展的战略支点&#xff0c;在“十四五”规划中将数字强省建设分为数字基础设施、数字科技、数字经济、数字政府、数字社会、数字生态六大部分&#xff0c;涵盖政治、经济、民生等多个方面&#xff0c;并将大数据、云计算、人工智能…...

【Electron】electron-builder打包失败问题记录

文章目录 yarn下载的包不支持require()winCodeSign-2.6.0.7z下载失败nsis-3.0.4.1.7z下载失败待补充... yarn下载的包不支持require() 报错内容&#xff1a; var stringWidth require(string-width)^ Error [ERR_REQUIRE_ESM]: require() of ES Module /stuff/node_modules/…...

OpenCV快速入门:直方图、掩膜、模板匹配和霍夫检测

文章目录 前言一、直方图基础1.1 直方图的概念和作用1.2 使用OpenCV生成直方图1.3 直方图归一化1.3.1 直方图归一化原理1.3.2 直方图归一化公式1.3.3 直方图归一化代码示例1.3.4 OpenCV内置方法&#xff1a;normalize()1.3.4.1 normalize()方法介绍1.3.4.2 normalize()方法参数…...

HDD与QLC SSD深度对比:功耗与存储密度的终极较量

在当今数据世界中&#xff0c;存储设备的选择对于整体系统性能和能耗有着至关重要的影响。硬盘HDD和大容量QLC SSD是两种主流的存储设备&#xff0c;而它们在功耗方面的表现是许多用户关注的焦点。 扩展阅读&#xff1a; 1.面对SSD的步步紧逼&#xff0c;HDD依然奋斗不息 2.…...

医疗软件制造商如何实施静态分析,满足 FDA 医疗器械网络安全验证

随着 FDA 对网络安全验证和标准提出更多要求&#xff0c;医疗软件制造商需要采用静态分析来确保其软件满足这些新的安全标准。继续阅读以了解如何实施静态分析来满足这些安全要求。 随着 FDA 在其软件验证指南中添加更多网络安全要求&#xff0c;医疗设备制造商可以转向静态分…...

【设计模式】聊聊策略模式

策略模式的本质是为了消除if 、else代码&#xff0c;提供拓展点&#xff0c;对拓展开放&#xff0c;对修改关闭&#xff0c;也就是说我们开发一个功能的时候&#xff0c;要尽量的采用设计模式进行将不变的东西进行抽取出来&#xff0c;将变化的东西进行隔离开来&#xff0c;这样…...

二维偏序问题

偏序 偏序(Partial Order)的概念: 设 A 是一个非空集,P 是 A 上的一个关系,若 P 满足下列条件: Ⅰ 对任意的 a ∈ A,(a, a) ∈ P;(自反性 reflexlve)Ⅱ 若 (a, b) ∈ P,且 (b, a) ∈ P,则 a = b;(反对称性,anti-symmentric)Ⅲ 若 (a, b) ∈ P,(b, c) ∈ P,则 (a,…...

解析Spring Boot中的CommandLineRunner和ApplicationRunner:用法、区别和适用场景详解

在Spring Boot应用程序中&#xff0c;CommandLineRunner和ApplicationRunner是两个重要的接口&#xff0c;它们允许我们在应用程序启动后执行一些初始化任务。本文将介绍CommandLineRunner和ApplicationRunner的区别&#xff0c;并提供代码示例和使用场景&#xff0c;让我们更好…...

谷歌浏览器版本下载

Chrome 已是最新版本 版本 119.0.6045.160&#xff08;正式版本&#xff09; &#xff08;64 位&#xff09; 自定义chrome https://www.sysgeek.cn/chrome-new-tab-page-customize/ chrome怎么把标签放主页 https://g.pconline.com.cn/x/1615/16153935.html 谷歌浏览器怎么设…...