一文了解GPU并行计算CUDA
了解GPU并行计算CUDA
- 一、CUDA和GPU简介
- 二、GPU工作原理与结构
- 2.1、基础GPU架构
- 2.2、GPU编程模型
- 2.3、软件和硬件的对应关系
- 三、GPU应用领域
- 四、GPU+CPU异构计算
- 五、MPI与CUDA的区别
一、CUDA和GPU简介
CUDA(Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。 它包含了CUDA指令集架构(ISA)以及GPU内部的并行计算引擎。 开发人员可以使用C语言来为CUDA™架构编写程序,所编写出的程序可以在支持CUDA™的处理器上以超高性能运行。CUDA3.0已经开始支持C++和FORTRAN。
GPU(Graphic Processing Unit):图形处理器,显卡的处理核心。电脑显示器上显示的图像,在显示在显示器上之前,要经过一些列处理,这个过程有个专有的名词叫“渲染"。以前的计算机上没有GPU,渲染就是CPU负责的。
渲染是个什么操作呢,其实就是做了一系列图形的计算,但这些计算往往非常耗时,占用了CPU的一大部分时间。而CPU还要处理计算机器许多其他任务。因此就专门针对图形处理的这些操作设计了一种处理器,也就是GPU。这样CPU就可以从繁重的图形计算中解脱出来。
NVIDIA公司在1999年发布Geforce 256图形处理芯片时首先提出GPU的概念,随后大量复杂的应用需求促使整个产业蓬勃发展至今。
最早的GPU是专门为了渲染设计的,那么他也就只能做渲染的那些事情。渲染这个过程具体来说就是几何点、位置和颜色的计算,这些计算在数学上都是用四维向量和变换矩阵的乘法,因此GPU也就被设计为专门适合做类似运算的专用处理器了。但随着GPU的发展,GPU的功能也越来越多,比如现在很多GPU还支持了硬件编解码。
全球GPU巨头:NVIDIA(英伟达)AMD(超威半导体)。

二、GPU工作原理与结构
GPU采用流式并行计算模式,可对每个数据行独立的并行计算。
GPU与CPU区别:
- CPU基于低延时设计,由运算器(ALU,Arithmetic and Logic Unit 算术逻辑单元)和控制器(CU,Control Unit),以及若干个寄存器和高速缓冲存储器组成,功能模块较多,擅长逻辑控制,串行运算。
- GPU基于大吞吐量设计,拥有更多的ALU用于数据处理,适合对密集数据进行并行处理,擅长大规模并发计算,因此GPU也被应用于AI训练等需要大规模并发计算场景。

2.1、基础GPU架构
GPU为图形图像专门设计,在矩阵运算,数值计算方面具有独特优势,特别是浮点和并行计算上能优于CPU的数十数百倍的性能。

GPU的优势在于快,而不是效果好。比如用美团软件给一张图要加上模糊效果,CPU处理的时候从左到右从上到下进行处理。可以考虑开多核,但是核数毕竟有限制,比如4核、8核 分块处理。
使用GPU进行处理,因为分块之前没有相互的关联关系,可以通过GPU并行处理,就不单只是4、 8分块了,可以切换更多的块,比如16、64等。
2.2、GPU编程模型
软件层面上不管什么计算设备,大部分异构计算都会分成主机代码和设备代码。整体思考过程就是应用分析、内存资源分配、线程资源分配再到具体核函数的实现。
CUDA中线程也可以分成三个层次:线程、线程块和线程网络。
- 线程是CUDA中基本执行单元,由硬件支持、开销很小,每个线程执行相同代码;
- 线程块(Block)是若干线程的分组,Block内一个块至多512个线程、或1024个线程(根据不同的GPU规格),线程块可以是一维、二维或者三维的;
- 线程网络(Grid)是若干线程块的网格,Grid是一维和二维的。
线程用ID索引,线程块内用局部ID标记threadID,配合blockDim和blockID可以计算出全局ID,用于SIMT(Single Instruction Multiple Thread单指令多线程)分配任务。

首先需要关注的是具体线程数量的划分,在并行计算部分里也提到数据划分和指令划分的概念,GPU有很多线程,在CUDA里被称为thread,同时我们会把一组thread归为一个block,而block又会被组织成一个grid。
假如我们要对一个长度为1024的数组做reduce_sum(减少和求和),恰好我们正好有1024个thread,此时直接一一对应就行,但如果是一张很大的图片呢?
如果有很多核函数要处理不同的数据呢?GPU上有很多thread,但要完全和实际应用中需要处理的数据大小完全匹配是不可能的,事实上在满足规定的情况下我们可以给一个block内部分配很多thread,对于到硬件上也真的是相应数量的thread会自动归为一组直接在一个SM上实行吗?答案当然不是,此时我们就要关注硬件,引入了wrap概念,GPU上有很多计算核心也就是Streaming Multiprocessor (SM),在具体的硬件执行中,一个SM会同时执行一组线程,在CUDA里叫warp,直接可以理解这组硬件线程会在这个SM上同时执行一部分指令,这一组的数量一般为32或者64个线程。一个block会被绑定到一个SM上,即使这个block内部可能有1024个线程,但这些线程组会被相应的调度器来进行调度,在逻辑层面上我们可以认为1024个线程同时执行,但实际上在硬件上是一组线程同时执行,这一点其实就和操作系统的线程调度一样。 意思就是假如一个SM同时能执行64个线程,但一个block有1024个线程,那这1024个线程是分1024/64=16次执行。

解释完了执行层面,再来分析一下内存层面上的对应,一个block不光要绑定在一个SM上,同时一个block内的thread是共享一块share memory(一般就是SM的一级缓存,越靠近SM的内存就越快)。GPU和CPU也一样有着多级cache还有寄存器的架构,把全局内存的数据加载到共享内存上再去处理可以有效的加速。所以结合具体的硬件具体的参数(SM和寄存器数量、缓存大小等)做出合适的划分,确保最大化的利用各种资源(计算、内存、带宽)是做异构计算的核心。
2.3、软件和硬件的对应关系
GPU在管理线程(thread)的时候是以block(线程块)为单元调度到SM上执行。每个block中以warp(一般32个线程或64线程)作为一次执行的单位(真正的同时执行)。
- 一个 GPU 包含多个 Streaming Multiprocessor ,而每个 Streaming Multiprocessor 又包含多个 core 。Streaming Multiprocessors 支持并发执行多达几百的 thread 。
- 一个 thread block 只能调度到一个 Streaming Multiprocessor 上运行,直到 thread block 运行完毕。一个Streaming Multiprocessor 可以同时运行多个thread block (因为有多个core)。
通俗点讲:stream multiprocessor(SM)是一块硬件,包含了固定数量的运算单元,寄存器和缓存。
写cuda kernel的时候,跟SM对应的概念是block,每一个block会被调度到某个SM执行,一个SM可以执行多个block。 cuda程序就是很多的blocks(一般来说越多越好)均匀的喂给这80个SM来调度执行。具体每个block喂给哪个SM没法控制。
不同的GPU规格参数也不一样,比如 Fermi 架构(2010年的比较老):
- 每一个SM上最多同时执行8个block。(不管block大小)
- 每一个SM上最多同时执行48个warp。
- 每一个SM上最多同时执行48*32=1,536个线程。
当warp访问内存的时候,processor(处理器)会做context switch(上下文切换),让其他warp使用硬件资源。因为是硬件来做,所以速度非常快。
三、GPU应用领域
GPU适用于深度学习训练和推理,图像识别、语音识别等;计算金融学、地震分析、分子建模、基因组学、计算流体动力学等;高清视频转码、安防视频监控、大型视频会议等;三维设计与渲染、影音动画制作、工程建模与仿真(CAD/CAE)、医学成像、游戏测试等等。
GPU常见的应用领域如下所示:
- 游戏:GeForce RTX/GTX系列GPU(PCs)、GeForce NOW(云游戏)、SHIELD(游戏主机)。
- 专业可视化:Quadro/RTX GPU(企业工作站) 。
- 数据中心:基于GPU的计算平台和系统,包括DGX(AI服务器)、HGX(超算)、EGX(边缘计算)、AGX(自动设备) 。
- 汽车:NVIDIA DRIVE计算平台,包括AGX Xavier(SoC芯片)、DRIVE AV(自动驾驶)、DRIVE IX(驾驶舱软件)、Constellation(仿真软件) 。
- 消费电子:智能手机市场占据了全球GPU市场份额的主导地位,此外,智能音箱、智能手环/手表、VR/AR眼镜等移动消费电子都是GPU潜在的市场。比如拍照、导航地图的合成、UI图标、图像框、照片的后处理等都需要GPU来完成。
更详细的应用场景参考:华秋元器件:一文看完GPU八大应用场景,抢食千亿美元市场
GPU算力 TOPs: OPS是Tera Operations Per Second的缩写,1TOPS代表处理器每秒钟可进行一万亿次操作。
四、GPU+CPU异构计算
异构计算从常见的搭配有CPU+GPU、CPU+FPGA、CPU+DSP等。
CPU的核心少但每一个核心的控制和计算能力都不弱,因此常作为主机。而GPU的计算核心很多, 所以当遇到大数据量且逻辑简单的任务,CPU就会交给GPU来进行计算,同时CPU的核心虽少但也是有多个线程的,多线程可以调度并同时控制多张GPU同时完成多个任务,这本身也是一种并行思想,并且GPU也可以在接收到任务后让CPU的线程先去处理别的事情完成异步控制来进一步提高效率(这本质上也是一种时域上的并行)。
之所以出现GPU+CPU异构计算,因为CPU和GPU各自有优缺点:
- CPU 适用于一系列广泛的工作负载,特别是那些对于延迟和单位内核性能要求较高的工作负载。作为强大的执行引擎, CPU 将它数量相对较少的内核集中用于处理单个任务,并快速将其完成。这使它尤其适合用于处理从串行计算到数据库 运行等类型的工作。
- GPU 最初是作为专门用于加速特定 3D 渲染任务的 ASIC 开发而成的。随着时间的推移,这些功能固定的引擎变得更加可编程化、更加灵活。尽管图形处理和当下视觉效果越来越真实的顶级游戏仍是 GPU 的主要功能,但同时,它也已经演 化为用途更普遍的并行处理器,能够处理越来越多的应用程序。
五、MPI与CUDA的区别
MPI全称Massage Passing Interface是支持c、c++等语言的并行编程的拓展库,主要是负责多进程之间的通信。用于编写并行计算程序。我们通过MPI并行库来编写并行化的程序。
由于“天河二号”等高性能计算机在运行的时候是同一个程序会运行在很多节点上,每个节点上都是一个进程。这些进程也就是这些节点之间需要相互通信来达到程序的并行。因此想要利用“天河二号”的计算能力来帮助自己运行程序,就需要将自己的程序改为MPI的并行程序,至于超级计算机分配哪些任务给哪些节点是我们不需要知道的,以及节点之间如何通信,利用中心架构进行通信还是非中心架构进行通信也是我们不需要知道的,我们要了解的就是如何将自己在个人计算机上运行的普通程序改成可以在超级计算机上运行的MPI程序即可。
MPI框架下,同一个程序在多个节点中以进程形式存在,这些进程组成一个group,每个进程都有唯一的进程号,MPI的点对点通信有两种,一种是消息发送,一种是消息的接收,最简单的为MPI_Send()和MPI_Recv()。
相对应的,还有另外三种通信方式缓存通信、同步通信、就绪通信。
(1)缓存通信:用户提供通信缓冲区,避免了系统内存拷贝,提高了通信效率,但是缓冲区需用户自己管理。
(2)同步通信:发送进程只有当接受进程开始接收(不需要全部接收)的时候才返回。
(3)就绪通信:发送进程的发送操作只有当接受进程已经开启了接收操作的时候才能够成功调用,否则发送操作将会出错。

相关文章:
一文了解GPU并行计算CUDA
了解GPU并行计算CUDA一、CUDA和GPU简介二、GPU工作原理与结构2.1、基础GPU架构2.2、GPU编程模型2.3、软件和硬件的对应关系三、GPU应用领域四、GPUCPU异构计算五、MPI与CUDA的区别一、CUDA和GPU简介 CUDA(Compute Unified Device Architecture)…...
全网资料最全Java数据结构与算法(1)
一、数据结构和算法概述 1.1什么是数据结构? 官方解释: 数据结构是一门研究非数值计算的程序设计问题中的操作对象,以及他们之间的关系和操作等相关问题的学科。 大白话: 数据结构就是把数据元素按照一定的关系组织起来的集合&a…...
【项目实战】SpringMVC拦截器HandlerInterceptor入门介绍
一、拦截器介绍 拦截器是应用程序级框架中常用的拦截用户请求、实施业务流程控制的模式,它可以将一些公共的、重复发生的业务逻辑从业务处理代码中独立出来,使系统的结构更加清晰,程序的复杂度也减小了。 拦截器是一个常见的特性,它可以实现任何自定义功能,而无需调整业…...
阿里淘宝新势力造型合伙人P8、年薪百万的欧阳娜娜也躲不过的魔鬼面试,看的我心服口服
阿里淘宝新势力造型合伙人P8、年薪百万的欧阳娜娜跳槽了,这不是关键。 她参加了网易有道明星语音录音员/代言人的面试,这也不是关键。 关键是她教科书式的面试过程,狠狠地给我们上了一课。 我是无意间刷到的这个视频的时候,就一…...
深度学习笔记:不同的反向传播迭代方法
1 随机梯度下降法SGD 随机梯度下降法每次迭代取梯度下降最大的方向更新。这一方法实现简单,但是在很多函数中,梯度下降的方向不一定指向函数最低点,这使得梯度下降呈现“之”字形,其效率较低 class SGD:"""随机…...
ElasticSearch 学习笔记总结(三)
文章目录一、ES 相关名词 专业介绍二、ES 系统架构三、ES 创建分片副本 和 elasticsearch-head插件四、ES 故障转移五、ES 应对故障六、ES 路由计算 和 分片控制七、ES集群 数据写流程八、ES集群 数据读流程九、ES集群 更新流程 和 批量操作十、ES 相关重要 概念 和 名词十一、…...
深入理解border以及应用
深入border属性以及应用👏👏 border这个属性在开发过程中很常用,常常用它来作为边界的。但是大家真的了解border吗?以及它的形状是什么样子的。 我们先来看这样一段代码:👏 <!--* Author: syk 185901…...
如何复现论文?什么是论文复现?
参考资料: 学习篇—顶会Paper复现方法 - 知乎 如何读论文?复现代码?_复现代码是什么意思 - CSDN 我是如何复现我人生的第一篇论文的 - 知乎 在我看来,论文复现应该有一个大前提和分为两个层次。 大前提是你要清楚地懂得自己要…...
22.2.28打卡 Codeforces Round #851 (Div. 2) A~C
A题 One and Two 题面翻译 题目描述 给你一个数列 a1,a2,…,ana_1, a_2, \ldots, a_na1,a2,…,an . 数列中的每一个数的值要么是 111 要么是 222 . 找到一个最小的正整数 kkk,使之满足: 1≤k≤n−11 \leq k \leq n-11≤k≤n−1 , anda1⋅a2⋅……...
Learining C++ No.12【vector】
引言: 北京时间:2023/2/27/11:42,高数考试还在进行中,我充分意识到了学校的不高级,因为题目真的没什么意思,虽然挺平易近人,但是……,考试期间时间比较放松,所以不能耽误…...
【数电基础】——逻辑代数运算
目录 1.概念 1.基本逻辑概念 2.基本逻辑电路(与或非) 逻辑与运算 与门电路: 逻辑或运算 或门电路: 逻辑非运算(逻辑反) 非门电路编辑 3.复合逻辑电路(运算) 与非逻辑…...
【Redis】什么是缓存与数据库双写不一致?怎么解决?
1. 热点缓存重建 我们以热点缓存 key 重建来一步步引出什么是缓存与数据库双写不一致,及其解决办法。 1.1 什么是热点缓存重建 在实际开发中,开发人员使用 “缓存 过期时间” 的策略来实现加速数据读写和内存使用率,这种策略能满足大多数…...
互联网衰退期,测试工程师35岁之路怎么走...
国内的互联网行业发展较快,所以造成了技术研发类员工工作强度比较大,同时技术的快速更新又需要员工不断的学习新的技术。因此淘汰率也比较高,超过35岁的基层研发类员工,往往因为家庭原因、身体原因,比较难以跟得上工作…...
动态规划(以背包问题为例)
1) 要求达到的目标为装入的背包的总价值最大,并且重量不超出2) 要求装入的物品不能重复动态规划(Dynamic Programming)算法的核心思想是:将大问题划分为小问题进行解决,从而一步步获取最优解的处理算法。动态规划算法与分治算法类似ÿ…...
Java异常
异常的体系结构 在java的Throwable下有Error和Exception两个子类 Error(错误):程序运行中出现了严重的问题,非代码性错误,无法处理,常见的有虚拟机运行错误和内存溢出等Exception(异常):是由于代码本身造成的问题,可以进行处理,异常一个可以分为运行时异常和编译时异常 运行…...
别克GL8改装完工,一起来看看效果
①豪华商务头等舱 别克GL8作为商务车,不管是家用还是商务接待,原车内饰都太掉档次了,所以车主要求全部换掉。>>织布座椅换成航空座椅 主副驾:改装纳帕皮 中排:改装水晶宝座豪华版航空座椅,带通风、加…...
mac 中 shell 一些知识
mac 设置环境变量首先得看你所使用的 shell shell 是一个命令行解释器,顾名思义就是机器外面的一层壳,用于人机交互,只要是人与电脑之间交互的接口,就可以称为 shell。表现为其作用是用户输入一条命令,shell 就立即解…...
CentOS 配置FTP(开启VSFTPD服务)
网上已经有很多关于VSFTPD的配置,但有两个通病,要么就是原理介绍太多,要么就是不完整,操作下来又要查询多篇文章才能用。 我这里不讲原理,只记录操作,尽可能通过复制下面的操作可以实现FTP读写功能。方便自…...
Http的请求方法
Http的请求方法对应的数据传输能力把Http请求分为Url类请求和Body类请求 1.Url类请求包括但不限于GET、HEAD、OPTIONS、TRACE 等请求方法 2.Body类请求包括但不限于POST、PUSH、PATCH、DELETE 等请求方法。 3.原因:get请求没有请求体(好像也可以…...
Python字典-- 内附蓝桥题:统计数字
字典 ~~不定时更新🎃,上次更新:2023/02/28 🗡常用函数(方法) 1. dic.get(key) --> 判断字典 dic 是否有 key,有返回其对应的值,没有返回 None 举个栗子🌰 dic …...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...
[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?
论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...
从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
ServerTrust 并非唯一
NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...
12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
[Java恶补day16] 238.除自身以外数组的乘积
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...
