当前位置: 首页 > news >正文

R语言绘制SCI论文中常见的箱线散点图,并自动进行方差分析计算显著性水平

显著性标记箱线散点图

本篇笔记的内容是在R语言中利用ggplot2,ggsignif,ggsci,ggpubr等包制作箱线散点图,并计算指定变量之间的显著性水平,对不同分组进行特异性标记,最终效果如下。

alt

加载R包

library(ggplot2)
library(ggsignif)
library(ggsci)
library(ggpubr)

载入示例数据

本次使用R语言自带的数据集mpg进行演示,内含不同汽车的相关数据指标。

df <- mpg
head(mpg)
image-20230225112418099
image-20230225112418099

进行绘图

ggplot(df,aes(class,hwy))+
  geom_boxplot(aes(fill=class))
image-20230225112207918
image-20230225112207918

首先绘制出一张普通的箱线图,填充颜色与车型分类class变量有关,然后在其基础上添加图层。下面检测compact\~pickupsubcompact\~suv的相关性,采用t测验,标注信息与横线距离0.1,两端竖线距离0.05

ggplot(df,aes(class,hwy))+
  geom_boxplot(aes(fill=class))+
  geom_signif(
    comparisons = list(
    c("compact","pickup"),
    c("subcompact","suv")
    ), #检测两者之间的差异显著性
    map_signif_level = T#添加星号标记
    test = "t.test"#检测方法
    vjust=0.1#标注和横线的距离
    tip_length = 0.05 #两端短竖线的长度
  )
image-20230225112234203
image-20230225112234203

现在可以从图中看出显著性检验的结果,如果想显示p值,只需要将map_signif_level改为F即可,接下来对图片添加注释信息。

ggplot(df,aes(class,hwy))+
  geom_boxplot(aes(fill=class))+
  geom_signif(
    comparisons = list(
    c("compact","pickup"),
    c("subcompact","suv")
    ), #检测两者之间的差异显著性
    map_signif_level = T#添加星号标记
    test = "t.test"#检测方法
    vjust=0.1#标注和横线的距离
    tip_length = 0.05 #两端短竖线的长度
  )+
  geom_signif(
    annotations = c("one","two"), #添加注释
    y_position = c(40,42),xmin = c(2,1),xmax = c(5,3#添加的位置
  )
image-20230225112303985
image-20230225112303985

添加位置信息使用annotations参数,设置信息后利用位置参数进行标注。添加散点图的图层,设置点的颜色和位置,更改箱线图的透明度为70%,最后,再对结果进行主题修改和美化,最终呈现如下效果:

ggplot(df,aes(class,hwy))+
  geom_point(aes(color = class),position = "jitter")+
  geom_boxplot(aes(fill=class),alpha=0.7)+
  geom_signif(
    comparisons = list(
    c("compact","pickup"),
    c("subcompact","suv")
    ), #检测两者之间的差异显著性
    map_signif_level = T#添加星号标记
    test = "t.test"#检测方法
    vjust=0.1#标注和横线的距离
    tip_length = 0.05 #两端短竖线的长度
  )+
  geom_signif(
    annotations = c("one","two"), #添加注释
    y_position = c(40,42),xmin = c(2,2),xmax = c(5,3#添加的位置
  )+
  scale_y_continuous(limits = c(10,48))+
  theme_bw()+
  theme(
    legend.position = "none",
    axis.title = element_text(size = 15,face = "bold"),
    axis.text.x = element_text(size = 12,hjust = 1,angle = 45,color = "black"),
    axis.title.y = element_text(size = 12,color = "black"))
alt

各组显著性比较

载入数据

仍然使用mpg数据集,不过需要注意的是,将class变量变为因子型,因为这样可以在对比过程中按照一定的顺序依次进行。compare_means函数能够对不同变量进行假设检验,com_list变量储存了比较的不同分组,利用for循环生成两两配对的比对列表。

df <- mpg
df$class <- as.factor(df$class)
levels(df$class)
compare <- compare_means(hwy~class,df,method = "t.test")
com_list <- list()
for (i in 1:nrow(compare)){
  com_list[[i]] <- c(compare$group1[i],compare$group2[i])
}

开始绘图

该步骤使用ggplot绘图,方法和之前的一样,不过这里显示了每个变量之间的两两比较结果。

ggplot(df,aes(class,hwy))+
  geom_boxplot(aes(fill=class))+
  stat_compare_means(comparisons = com_list,
                     test = "t.test",
                     step.increase = 0.1,
                     map_signif_level = T)+
  theme_bw()+
  scale_fill_jco()
image-20230225112023290
image-20230225112023290

本文由 mdnice 多平台发布

相关文章:

R语言绘制SCI论文中常见的箱线散点图,并自动进行方差分析计算显著性水平

显著性标记箱线散点图 本篇笔记的内容是在R语言中利用ggplot2&#xff0c;ggsignif&#xff0c;ggsci&#xff0c;ggpubr等包制作箱线散点图&#xff0c;并计算指定变量之间的显著性水平&#xff0c;对不同分组进行特异性标记&#xff0c;最终效果如下。 加载R包 library(ggplo…...

redux-saga

redux-saga 官网&#xff1a;About | Redux-Saga 中文网&#xff1a;自述 Redux-Saga redux-saga 是一个用于管理 异步获取数据(副作用) 的redux中间件&#xff1b;它的目标是让副作用管理更容易&#xff0c;执行更高效&#xff0c;测试更简单&#xff0c;处理故障时更容易… …...

【C++】-- 智能指针

目录 智能指针意义 智能指针的使用及原理 RAII 智能指针的原理 std::auto_ptr std::auto_ptr的模拟实现 std::unique_ptr std::unique_ptr模拟实现 std::shared_ptr std::shared_ptr的模拟实现 循环引用问题 智能指针意义 #问&#xff1a;为什么需要智能指针&#…...

数据结构与算法——4时间复杂度分析2(常见的大O阶)

这篇文章是时间复杂度分析的第二篇。在前一篇文章中&#xff0c;我们从0推导出了为什么要用时间复杂度&#xff0c;时间复杂度如何分析以及时间复杂度的表示三部分内容。这篇文章&#xff0c;是对一些常用的时间复杂度进行一个总结&#xff0c;相当于是一个小结论 1.常见的大O…...

IIS解析漏洞

IIS 6.0在解析文件时存在以下两个解析漏洞。 ①当建立*.asa、*.asp格式的文件夹时&#xff0c;其目录下的任意文件都将被IIS当作asp文件来解析。 例如&#xff1a;建立文件夹 parsing.asp&#xff0c;在 parsing.asp 文件夹内新建一个文本文档 test.txt&#xff0c;其内容为&…...

2023 年腾讯云轻量和CVM服务器租用价格表出炉(CPU/内存/带宽/系统盘)

腾讯云服务器的价格表是用户比较关心的问题&#xff0c;服务器的价格组成包括云服务器的机型价格、磁盘价格和宽带价格&#xff0c;主机教程网来详细说下腾讯云最新的云服务器价格表。我们以北京一区、Linux系统的云服务器为例&#xff0c;其他地域的价格会有所差异&#xff0c…...

Java学习之路002——面向对象编程

【说明】部分内容来源于网络&#xff0c;如有冲突&#xff0c;请联系作者删除。 一、面向对象编程(OOP) 2.1 对象和类的关系 2.2 面向对象的特征 2.2.1 封装 2.2.2 继承 2.2.3 多态 3、抽象 使用abstract关键字修饰的类或者方法 定义抽象类(使用abstract) // 1、定义抽象方法…...

VR直播丨颠覆性技术革命,新型直播已经到来

细数当下最火热的营销手段&#xff0c;首先浮现脑海的无疑是“直播”。前有罗永浩、李佳琦&#xff0c;后有刘畊宏和东方甄选&#xff0c;直播如日中天&#xff0c;俨然成了大众足不出户就能休闲娱乐的重要途径。 而随着虚拟现实在“十四五规划”中被列入“建设数字中国”数字…...

【微信小程序】-- WXSS 模板样式- rpx import (十三)

&#x1f48c; 所属专栏&#xff1a;【微信小程序开发教程】 &#x1f600; 作  者&#xff1a;我是夜阑的狗&#x1f436; &#x1f680; 个人简介&#xff1a;一个正在努力学技术的CV工程师&#xff0c;专注基础和实战分享 &#xff0c;欢迎咨询&#xff01; &…...

Biotin-PEG-SVA,生物素聚乙二醇琥珀酰亚胺戊酸酯,可用于检测或分子标记

Biotin-PEG-SVA 结构式&#xff1a;PEG分子量&#xff1a; 1000&#xff0c;2000&#xff0c;3400&#xff0c;5000&#xff0c;10000中文名称&#xff1a;生物素聚乙二醇琥珀酰亚胺戊酸酯&#xff0c;生物素-PEG-琥珀酰亚胺戊酸酯英文名称&#xff1a;Biotin-PEG-SVA &#xf…...

云原生是什么?核心概念和应用方法解析

什么是云原生&#xff1f; 云原生是一种基于容器、微服务和自动化运维的软件开发和部署方法。它可以使应用程序更加高效、可靠和可扩展&#xff0c;适用于各种不同的云平台。 如果要更直接通俗的来解释下上面的概念。云原生更准确来说就是一种文化&#xff0c;是一种潮流&…...

Editor工具开发实用篇:EditorGUI/EditorGUILayout的区别和EditorGUILayout的方法介绍

目录 一&#xff1a;EditorGUI和EditorGUILayout区别 二&#xff1a;EditorGUILayout 1.EditorGUILayout.BeginFadeGroup(float value); 2.EditorGUILayout.BeginHorizontal EditorGUILayout.BeginVertical 3.EditorGUILayout.BeginScrollView 4.EditorGUILayout.BeginT…...

(五十二)大白话不断在表中插入数据时,物理存储是如何进行页分裂的?.md

上回我们讲到了数据页的物理存储结构&#xff0c;数据页之间是组成双向链表的&#xff0c;数据页内部的数据行是组成单向链表的&#xff0c;每个数据页内根据主键做了一个页目录 然后一般来说&#xff0c;你没有索引的情况下&#xff0c;所有的数据查询&#xff0c;其实在物理…...

Unity 渲染顺序

Unity中的渲染顺序自上而下大致分为三层渲染优先级 Camera depth > Sorting Layer > Order in Layer > RenderQueueCamera depth:越小越优先&#xff08;大的显示在小的前面&#xff09;如图&#xff1a;尽管Sphere距离摄像机较远&#xff0c;但由于Camera_Sphere dep…...

短视频美颜sdk人脸编辑技术详解、美颜sdk代码分析

短视频美颜sdk中人脸编辑技术可以将人像风格进行转变&#xff0c;小编认为这也是未来的美颜sdk的一个重要发展方向&#xff0c;下文小编将为大家讲解一下短视频美颜sdk中人脸编辑的关键点。 一、人脸编辑的细分关键点 1、年龄 通过更改人脸的年龄属性&#xff0c;可用于模仿人…...

error: expected declaration specifiers or ‘...’ before ‘(’ token

一、问题 最近写函数时&#xff0c;遇到了一个比较奇怪的问题&#xff0c;相信也好多人遇到一下的问题&#xff1a; error: expected declaration specifiers or ‘...’ before ‘(’ token代码如下&#xff1a; #include<stdio.h> struct stu{char *name;int score;…...

系列七、索引

一、索引概述 1.1、概述 索引&#xff08;index&#xff09;是帮助MySQL高效获取数据的数据结构(有序)。在数据之外&#xff0c;数据库系统还维护着满足特定查找算法的数据结构&#xff0c;这些数据结构以某种方式引用&#xff08;指向&#xff09;数据&#xff0c; 这样就可以…...

Java开发 - Elasticsearch初体验

目录 前言 什么是es&#xff1f; 为什么要使用es&#xff1f; es查询的原理&#xff1f; es需要准备什么&#xff1f; es基本用法 创建工程 添加依赖 创建操作es的文件 使用ik分词插件 Spring Data 项目中引入Spring Data 添加依赖 添加配置 创建操作es的业务逻…...

mysql进阶

mysql进阶视图视图是一个基于查询的虚拟表&#xff0c;封装了一条sql语句,通俗的解释&#xff0c;视图就是一条select查询之后的结果集&#xff0c;视图并不存储数据&#xff0c;数据仍旧存储在表中。创建视图语句&#xff1a;create view view_admin as select * from admin使…...

SD卡损坏了?储存卡恢复数据就靠这3个方法

作为一种方便的储存设备&#xff0c;SD卡在我们的日常生活中使用非常广泛。但是&#xff0c;有时候我们可能会遇到SD卡损坏的情况&#xff0c;这时候里面存储的数据就会受到影响。SD卡里面保存着我们很多重要的数据&#xff0c;有些还是工作必须要使用的。 如果您遇到了这种情…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...

【笔记】WSL 中 Rust 安装与测试完整记录

#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统&#xff1a;Ubuntu 24.04 LTS (WSL2)架构&#xff1a;x86_64 (GNU/Linux)Rust 版本&#xff1a;rustc 1.87.0 (2025-05-09)Cargo 版本&#xff1a;cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...

pikachu靶场通关笔记19 SQL注入02-字符型注入(GET)

目录 一、SQL注入 二、字符型SQL注入 三、字符型注入与数字型注入 四、源码分析 五、渗透实战 1、渗透准备 2、SQL注入探测 &#xff08;1&#xff09;输入单引号 &#xff08;2&#xff09;万能注入语句 3、获取回显列orderby 4、获取数据库名database 5、获取表名…...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制

目录 节点的功能承载层&#xff08;GATT/Adv&#xff09;局限性&#xff1a; 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能&#xff0c;如 Configuration …...

LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)

在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...

Mac flutter环境搭建

一、下载flutter sdk 制作 Android 应用 | Flutter 中文文档 - Flutter 中文开发者网站 - Flutter 1、查看mac电脑处理器选择sdk 2、解压 unzip ~/Downloads/flutter_macos_arm64_3.32.2-stable.zip \ -d ~/development/ 3、添加环境变量 命令行打开配置环境变量文件 ope…...

Linux操作系统共享Windows操作系统的文件

目录 一、共享文件 二、挂载 一、共享文件 点击虚拟机选项-设置 点击选项&#xff0c;设置文件夹共享为总是启用&#xff0c;点击添加&#xff0c;可添加需要共享的文件夹 查询是否共享成功 ls /mnt/hgfs 如果显示Download&#xff08;这是我共享的文件夹&#xff09;&…...

21-Oracle 23 ai-Automatic SQL Plan Management(SPM)

小伙伴们&#xff0c;有没有迁移数据库完毕后或是突然某一天在同一个实例上同样的SQL&#xff0c; 性能不一样了、业务反馈卡顿、业务超时等各种匪夷所思的现状。 于是SPM定位开始&#xff0c;OCM考试中SPM必考。 其他的AWR、ASH、SQLHC、SQLT、SQL profile等换作下一个话题…...