深度学习第1天:深度学习入门-Keras与典型神经网络结构

☁️主页 Nowl
🔥专栏《机器学习实战》 《机器学习》
📑君子坐而论道,少年起而行之
文章目录
神经网络
介绍
结构
基本要素
Keras
介绍
导入
定义网络
模型训练
前馈神经网络
特点
常见类型
代码示例
反馈神经网络
特点
作用
常见类型
代码示例
结语
神经网络
介绍
我们知道,深度学习也是机器学习的一个范畴,所以它满足机器学习的基本思想:从数据中拟合出某种规律,只是它的模型结构与经典机器学习的模型不同,且具有特色:它的模型结构像人脑的神经元一样连接,所以我们也把这种结构叫做神经网络
结构
由数个神经元组成一层,整个神经网络由多个层组成,最开始的层叫做输入层,最后的层叫做输出层,输入层与输出层中间的叫做隐藏层,层与层之间互相连接

基本要素
作为机器学习的一种,深度学习当然也有模型性能评估函数,损失函数,优化方法,神经网络还有一个激活函数的概念,这个激活函数添加到某个神经网络的层上,将输入经过某种函数变化后再输出,常见的激活函数有sigmoid,relu等,不用着急,这些概念我们在之后的系列文章中都会反复提到
Keras
介绍
本系列教程将主要使用Keras库进行讲解,Keras是一个流行的python深度学习库,在许多人工智能竞赛中使用量都居于领先地位

导入
from keras.models import Sequential # 导入Sequential 模型
from keras.layers import Dense # 导入Dense层
import numpy as np
Sequential是一种存储神经网络的模型
Dense是全连接层,每个神经元都与上一层的所有神经元相连
定义网络
model = Sequential()
model.add(Dense(6, input_dim=4, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
这行代码先创建了一个Sequential模型,然后往里面添加了两个全连接层,第一个全连接层的输入是4个神经元,这一层有6个神经元,激活函数是relu,第二个全连接层只有一个神经元,而它的输入由上一层自动判断,也就是6个神经元,激活函数是sigmoid
模型训练
# 编译模型
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])# 训练模型
model.fit(X, y, epochs=10, batch_size=32)
compile初始化了一些基本设置 ,定义了损失函数(loss),定义了优化器(optimizer),定义了评估模型性能的指标(metrics)
fit开始训练模型,epochs定义了训练批次,batch_size设置了每次训练提取的样本数(深度学习训练过程每次一般都是抽取训练集的一个子集,这样做往往可以提高模型训练速度)
前馈神经网络
特点
前一个神经元的输出是后一个神经元的输入,一般结构如下图所示
常见类型
感知机,全连接神经网络,深度神经网络,卷积神经网络
代码示例
from keras.models import Sequential
from keras.layers import Dense
import numpy as np# 生成一些示例数据
X = np.random.random((1000, 20))
y = np.random.randint(2, size=(1000, 1))# 定义简单的前馈神经网络
model = Sequential()
model.add(Dense(64, input_dim=20, activation='relu'))
model.add(Dense(1, activation='sigmoid'))# 编译模型
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])# 训练模型
model.fit(X, y, epochs=10, batch_size=32)
这段代码定义了一个最简单的前馈神经网络,整个模型结构有一个输入层(就是我们输入的数据,这个层没有添加到Sequential中),一个隐藏层,一个输出层
反馈神经网络
特点
某一个神经元的输入不只与前一个神经元有关,而是可能与之前的所有神经元有关

作用
反馈神经网络通常用来处理序列数据,如语音,文本等,因为这些数据通常跟前后文有关,我们需要反馈神经网络的结构来记忆前后文的关系
常见类型
循环神经网络,长短时记忆网络
代码示例
from keras.models import Sequential
from keras.layers import SimpleRNN, Dense
import numpy as np# 生成一些示例数据
X = np.random.random((1000, 10, 20)) # 1000个样本,每个样本有10个时间步,每个时间步有20个特征
y = np.random.randint(2, size=(1000, 1))# 定义简单的反馈神经网络
model = Sequential()
model.add(SimpleRNN(64, input_shape=(10, 20), activation='relu'))
model.add(Dense(1, activation='sigmoid'))# 编译模型
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])# 训练模型
model.fit(X, y, epochs=10, batch_size=32)
这段代码定义了一个最简单的反馈神经网络,隐藏层为RNN层,设置时间步为10,这意味着数据会在RNN层循环十次后再输入到下一层
结语
对于深度学习,我们主要要了解以下几个方面
- 神经网络中层与层的连接方式(前馈,反馈)
- 各种神经网络层的作用(卷积层,池化层)
- 激活函数(relu)
- 损失函数
- 优化方法
相关文章:
深度学习第1天:深度学习入门-Keras与典型神经网络结构
☁️主页 Nowl 🔥专栏《机器学习实战》 《机器学习》 📑君子坐而论道,少年起而行之 文章目录 神经网络 介绍 结构 基本要素 Keras 介绍 导入 定义网络 模型训练 前馈神经网络 特点 常见类型 代码示例 反馈神经网络 特点 …...
青云科技容器平台与星辰天合存储产品完成兼容性互认证
近日, 北京青云科技股份有限公司(以下简称:青云科技)的 KubeSphere 企业版容器平台成功完成了与 XSKY星辰天合的企业级分布式统一数据平台 V6(简称:XEDP)以及天合翔宇分布式存储系统 V6…...
谈谈基于Redis的分布式锁
目录 前言 基本介绍 演化过程 防死锁 防误删 自动续期 可重入 主从一致 总结 前言 在我们没有了解分布式锁前,使用最多的就是线程锁和进程锁,但他们仅能满足在单机jvm或者同一个操作系统下,才能有效。跨jvm系统,无法…...
逸学java【初级菜鸟篇】10.I/O(输入/输出)
hi,我是逸尘,一起学java吧 目标(任务驱动) 1.请重点的掌握I/O的。 场景:最近你在企业也想搞一个短视频又想搞一个存储的云盘,你一听回想到自己对于这些存储的基础还不是很清楚,于是回家开始了…...
【Python进阶笔记】md文档笔记第6篇:Python进程和多线程使用(图文和代码)
本文从14大模块展示了python高级用的应用。分别有Linux命令,多任务编程、网络编程、Http协议和静态Web编程、htmlcss、JavaScript、jQuery、MySql数据库的各种用法、python的闭包和装饰器、mini-web框架、正则表达式等相关文章的详细讲述。 全套md格式笔记和代码自…...
基于Vue+SpringBoot的数字化社区网格管理系统
项目编号: S 042 ,文末获取源码。 \color{red}{项目编号:S042,文末获取源码。} 项目编号:S042,文末获取源码。 目录 一、摘要1.1 项目介绍1.2 源码 & 项目录屏 二、功能模块三、开发背景四、系统展示五…...
【数据库设计和SQL基础语法】--数据库设计基础--数据建模与ER图
一、数据建模的基本概念 1.1. 数据模型的概念 数据模型是对现实世界中事物及其之间关系的一种抽象表示。它提供了描述数据结构、数据操作、数据约束等的方式,是数据库设计的基础。数据模型帮助我们理解数据之间的关系,提供了一种规范化的方式来组织和存…...
Vue3 设置点击后滚动条移动到固定的位置
需求: 点击不通过按钮,显示红框中表单,且滚动条滚动到底部 (显示红框中表单默认不显示) <el-button click"onApprovalPass">不通过</el-button> <div class"item" v-if"app…...
外部 prometheus监控k8s集群资源(pod、CPU、service、namespace、deployment等)
prometheus监控k8s集群资源 一,通过CADvisior 监控pod的资源状态1.1 授权外边用户可以访问prometheus接口。1.2 获取token保存1.3 配置prometheus.yml 启动并查看状态1.4 Grafana 导入仪表盘 二,通过kube-state-metrics 监控k8s资源状态2.1 部署 kube-st…...
LLMLingua:集成LlamaIndex,对提示进行压缩,提供大语言模型的高效推理
大型语言模型(llm)的出现刺激了多个领域的创新。但是在思维链(CoT)提示和情境学习(ICL)等策略的驱动下,提示的复杂性不断增加,这给计算带来了挑战。这些冗长的提示需要大量的资源来进行推理,因此需要高效的解决方案,本文将介绍LLM…...
数据资产确权的难点
数据是企业的重要资产之一,但是许多企业对于这项资产在管理上都面临着一些挑战,其中最关键就是数据确权的问题。接下来,将探讨数据资产确权的难点,并提出相应的解决方案,一起来看吧。 首先介绍一下数据资产入表的背景以…...
EMG肌肉电信号处理合集(二)
本文主要展示常见的肌电信号特征的提取说明。使用python 环境下的Pysiology计算库。 目录 1 肌电信号第一次burst的振幅, getAFP 函数 2 肌电信号波长的标准差计算,getDASDV函数 3 肌电信号功率谱频率比例,getFR函数 4 肌电信号直方图…...
2023亚马逊云科技re:Invent引领科技新潮流:云计算与生成式AI共塑未来
2023亚马逊云科技re:Invent引领科技新潮流:云计算与生成式AI共塑未来 历年来,亚马逊云科技re:Invent,不仅是全球云计算从业者的年度狂欢,更是全球云计算领域每年创新发布的关键节点。 2023年亚马逊云科技re:Invent大会在美国拉斯…...
案例018:基于微信小程序的实习记录系统
文末获取源码 开发语言:Java 框架:SSM JDK版本:JDK1.8 数据库:mysql 5.7 开发软件:eclipse/myeclipse/idea Maven包:Maven3.5.4 小程序框架:uniapp 小程序开发软件:HBuilder X 小程序…...
视频剪辑技巧:如何高效批量转码MP4视频为MOV格式
在视频剪辑的过程中,经常会遇到将MP4视频转码为MOV格式的情况。这不仅可以更好地编辑视频,还可以提升视频的播放质量和兼容性。对于大量视频文件的转码操作,如何高效地完成批量转码呢?现在一起来看看云炫AI智剪如何智能转码&#…...
node.js获取unsplash图片
1. 在Unsplash的开发者页面注册并创建一个应用程序,以便获取一个API访问密钥(即Access Key)。 2. 安装axios: npm install axios3. 使用获取到的API密钥进行请求。 示例代码如下: const axios require(axios);con…...
Git远程库操作(GitHub)
GitHub 网址:https://github.com/ 创建远程仓库 远程仓库操作 命令名称作用git remote -v查看当前所有远程地址别名git remote add 别名 远程地址起别名git push 别名 分支推送本地分支上的内容到远程仓库git clone 远程地址将远程仓库的内容克隆到本地git pull 别…...
java计算下一个整10分钟时间点
最近工作上遇到需要固定在整10分钟一个周期调度某个任务,所以需要这样一个功能,记录下 package org.example;import com.google.gson.Gson; import org.apache.commons.lang3.time.DateUtils;import java.io.InputStream; import java.util.Calendar; i…...
力扣刷题篇之排序算法
系列文章目录 前言 本系列是个人力扣刷题汇总,本文是排序算法。刷题顺序按照[力扣刷题攻略] Re:从零开始的力扣刷题生活 - 力扣(LeetCode) 这个之前写的左神的课程笔记里也有: 左程云算法与数据结构代码汇总之排序&am…...
一键填充字幕——Arctime pro
之前的博客中,我们聊到了PR这款专业的视频制作软件,但是pr有许多的功能需要搭配使用,相信不少小伙伴在剪辑视频时会发现一个致命的问题,就是字幕编写。伴随着人们对字幕需求的逐渐增加,这款软件便应运而生~ 相信应该有…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...
C++八股 —— 单例模式
文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全(Thread Safety) 线程安全是指在多线程环境下,某个函数、类或代码片段能够被多个线程同时调用时,仍能保证数据的一致性和逻辑的正确性…...
3-11单元格区域边界定位(End属性)学习笔记
返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...
Springboot社区养老保险系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,社区养老保险系统小程序被用户普遍使用,为方…...
管理学院权限管理系统开发总结
文章目录 🎓 管理学院权限管理系统开发总结 - 现代化Web应用实践之路📝 项目概述🏗️ 技术架构设计后端技术栈前端技术栈 💡 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 🗄️ 数据库设…...
#Uniapp篇:chrome调试unapp适配
chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器:Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...
【JVM】Java虚拟机(二)——垃圾回收
目录 一、如何判断对象可以回收 (一)引用计数法 (二)可达性分析算法 二、垃圾回收算法 (一)标记清除 (二)标记整理 (三)复制 (四ÿ…...
uniapp 字符包含的相关方法
在uniapp中,如果你想检查一个字符串是否包含另一个子字符串,你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的,但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...
SQL Server 触发器调用存储过程实现发送 HTTP 请求
文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...
ubuntu系统文件误删(/lib/x86_64-linux-gnu/libc.so.6)修复方案 [成功解决]
报错信息:libc.so.6: cannot open shared object file: No such file or directory: #ls, ln, sudo...命令都不能用 error while loading shared libraries: libc.so.6: cannot open shared object file: No such file or directory重启后报错信息&…...
