深度学习第1天:深度学习入门-Keras与典型神经网络结构

☁️主页 Nowl
🔥专栏《机器学习实战》 《机器学习》
📑君子坐而论道,少年起而行之
文章目录
神经网络
介绍
结构
基本要素
Keras
介绍
导入
定义网络
模型训练
前馈神经网络
特点
常见类型
代码示例
反馈神经网络
特点
作用
常见类型
代码示例
结语
神经网络
介绍
我们知道,深度学习也是机器学习的一个范畴,所以它满足机器学习的基本思想:从数据中拟合出某种规律,只是它的模型结构与经典机器学习的模型不同,且具有特色:它的模型结构像人脑的神经元一样连接,所以我们也把这种结构叫做神经网络
结构
由数个神经元组成一层,整个神经网络由多个层组成,最开始的层叫做输入层,最后的层叫做输出层,输入层与输出层中间的叫做隐藏层,层与层之间互相连接

基本要素
作为机器学习的一种,深度学习当然也有模型性能评估函数,损失函数,优化方法,神经网络还有一个激活函数的概念,这个激活函数添加到某个神经网络的层上,将输入经过某种函数变化后再输出,常见的激活函数有sigmoid,relu等,不用着急,这些概念我们在之后的系列文章中都会反复提到
Keras
介绍
本系列教程将主要使用Keras库进行讲解,Keras是一个流行的python深度学习库,在许多人工智能竞赛中使用量都居于领先地位

导入
from keras.models import Sequential # 导入Sequential 模型
from keras.layers import Dense # 导入Dense层
import numpy as np
Sequential是一种存储神经网络的模型
Dense是全连接层,每个神经元都与上一层的所有神经元相连
定义网络
model = Sequential()
model.add(Dense(6, input_dim=4, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
这行代码先创建了一个Sequential模型,然后往里面添加了两个全连接层,第一个全连接层的输入是4个神经元,这一层有6个神经元,激活函数是relu,第二个全连接层只有一个神经元,而它的输入由上一层自动判断,也就是6个神经元,激活函数是sigmoid
模型训练
# 编译模型
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])# 训练模型
model.fit(X, y, epochs=10, batch_size=32)
compile初始化了一些基本设置 ,定义了损失函数(loss),定义了优化器(optimizer),定义了评估模型性能的指标(metrics)
fit开始训练模型,epochs定义了训练批次,batch_size设置了每次训练提取的样本数(深度学习训练过程每次一般都是抽取训练集的一个子集,这样做往往可以提高模型训练速度)
前馈神经网络
特点
前一个神经元的输出是后一个神经元的输入,一般结构如下图所示
常见类型
感知机,全连接神经网络,深度神经网络,卷积神经网络
代码示例
from keras.models import Sequential
from keras.layers import Dense
import numpy as np# 生成一些示例数据
X = np.random.random((1000, 20))
y = np.random.randint(2, size=(1000, 1))# 定义简单的前馈神经网络
model = Sequential()
model.add(Dense(64, input_dim=20, activation='relu'))
model.add(Dense(1, activation='sigmoid'))# 编译模型
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])# 训练模型
model.fit(X, y, epochs=10, batch_size=32)
这段代码定义了一个最简单的前馈神经网络,整个模型结构有一个输入层(就是我们输入的数据,这个层没有添加到Sequential中),一个隐藏层,一个输出层
反馈神经网络
特点
某一个神经元的输入不只与前一个神经元有关,而是可能与之前的所有神经元有关

作用
反馈神经网络通常用来处理序列数据,如语音,文本等,因为这些数据通常跟前后文有关,我们需要反馈神经网络的结构来记忆前后文的关系
常见类型
循环神经网络,长短时记忆网络
代码示例
from keras.models import Sequential
from keras.layers import SimpleRNN, Dense
import numpy as np# 生成一些示例数据
X = np.random.random((1000, 10, 20)) # 1000个样本,每个样本有10个时间步,每个时间步有20个特征
y = np.random.randint(2, size=(1000, 1))# 定义简单的反馈神经网络
model = Sequential()
model.add(SimpleRNN(64, input_shape=(10, 20), activation='relu'))
model.add(Dense(1, activation='sigmoid'))# 编译模型
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])# 训练模型
model.fit(X, y, epochs=10, batch_size=32)
这段代码定义了一个最简单的反馈神经网络,隐藏层为RNN层,设置时间步为10,这意味着数据会在RNN层循环十次后再输入到下一层
结语
对于深度学习,我们主要要了解以下几个方面
- 神经网络中层与层的连接方式(前馈,反馈)
- 各种神经网络层的作用(卷积层,池化层)
- 激活函数(relu)
- 损失函数
- 优化方法
相关文章:
深度学习第1天:深度学习入门-Keras与典型神经网络结构
☁️主页 Nowl 🔥专栏《机器学习实战》 《机器学习》 📑君子坐而论道,少年起而行之 文章目录 神经网络 介绍 结构 基本要素 Keras 介绍 导入 定义网络 模型训练 前馈神经网络 特点 常见类型 代码示例 反馈神经网络 特点 …...
青云科技容器平台与星辰天合存储产品完成兼容性互认证
近日, 北京青云科技股份有限公司(以下简称:青云科技)的 KubeSphere 企业版容器平台成功完成了与 XSKY星辰天合的企业级分布式统一数据平台 V6(简称:XEDP)以及天合翔宇分布式存储系统 V6…...
谈谈基于Redis的分布式锁
目录 前言 基本介绍 演化过程 防死锁 防误删 自动续期 可重入 主从一致 总结 前言 在我们没有了解分布式锁前,使用最多的就是线程锁和进程锁,但他们仅能满足在单机jvm或者同一个操作系统下,才能有效。跨jvm系统,无法…...
逸学java【初级菜鸟篇】10.I/O(输入/输出)
hi,我是逸尘,一起学java吧 目标(任务驱动) 1.请重点的掌握I/O的。 场景:最近你在企业也想搞一个短视频又想搞一个存储的云盘,你一听回想到自己对于这些存储的基础还不是很清楚,于是回家开始了…...
【Python进阶笔记】md文档笔记第6篇:Python进程和多线程使用(图文和代码)
本文从14大模块展示了python高级用的应用。分别有Linux命令,多任务编程、网络编程、Http协议和静态Web编程、htmlcss、JavaScript、jQuery、MySql数据库的各种用法、python的闭包和装饰器、mini-web框架、正则表达式等相关文章的详细讲述。 全套md格式笔记和代码自…...
基于Vue+SpringBoot的数字化社区网格管理系统
项目编号: S 042 ,文末获取源码。 \color{red}{项目编号:S042,文末获取源码。} 项目编号:S042,文末获取源码。 目录 一、摘要1.1 项目介绍1.2 源码 & 项目录屏 二、功能模块三、开发背景四、系统展示五…...
【数据库设计和SQL基础语法】--数据库设计基础--数据建模与ER图
一、数据建模的基本概念 1.1. 数据模型的概念 数据模型是对现实世界中事物及其之间关系的一种抽象表示。它提供了描述数据结构、数据操作、数据约束等的方式,是数据库设计的基础。数据模型帮助我们理解数据之间的关系,提供了一种规范化的方式来组织和存…...
Vue3 设置点击后滚动条移动到固定的位置
需求: 点击不通过按钮,显示红框中表单,且滚动条滚动到底部 (显示红框中表单默认不显示) <el-button click"onApprovalPass">不通过</el-button> <div class"item" v-if"app…...
外部 prometheus监控k8s集群资源(pod、CPU、service、namespace、deployment等)
prometheus监控k8s集群资源 一,通过CADvisior 监控pod的资源状态1.1 授权外边用户可以访问prometheus接口。1.2 获取token保存1.3 配置prometheus.yml 启动并查看状态1.4 Grafana 导入仪表盘 二,通过kube-state-metrics 监控k8s资源状态2.1 部署 kube-st…...
LLMLingua:集成LlamaIndex,对提示进行压缩,提供大语言模型的高效推理
大型语言模型(llm)的出现刺激了多个领域的创新。但是在思维链(CoT)提示和情境学习(ICL)等策略的驱动下,提示的复杂性不断增加,这给计算带来了挑战。这些冗长的提示需要大量的资源来进行推理,因此需要高效的解决方案,本文将介绍LLM…...
数据资产确权的难点
数据是企业的重要资产之一,但是许多企业对于这项资产在管理上都面临着一些挑战,其中最关键就是数据确权的问题。接下来,将探讨数据资产确权的难点,并提出相应的解决方案,一起来看吧。 首先介绍一下数据资产入表的背景以…...
EMG肌肉电信号处理合集(二)
本文主要展示常见的肌电信号特征的提取说明。使用python 环境下的Pysiology计算库。 目录 1 肌电信号第一次burst的振幅, getAFP 函数 2 肌电信号波长的标准差计算,getDASDV函数 3 肌电信号功率谱频率比例,getFR函数 4 肌电信号直方图…...
2023亚马逊云科技re:Invent引领科技新潮流:云计算与生成式AI共塑未来
2023亚马逊云科技re:Invent引领科技新潮流:云计算与生成式AI共塑未来 历年来,亚马逊云科技re:Invent,不仅是全球云计算从业者的年度狂欢,更是全球云计算领域每年创新发布的关键节点。 2023年亚马逊云科技re:Invent大会在美国拉斯…...
案例018:基于微信小程序的实习记录系统
文末获取源码 开发语言:Java 框架:SSM JDK版本:JDK1.8 数据库:mysql 5.7 开发软件:eclipse/myeclipse/idea Maven包:Maven3.5.4 小程序框架:uniapp 小程序开发软件:HBuilder X 小程序…...
视频剪辑技巧:如何高效批量转码MP4视频为MOV格式
在视频剪辑的过程中,经常会遇到将MP4视频转码为MOV格式的情况。这不仅可以更好地编辑视频,还可以提升视频的播放质量和兼容性。对于大量视频文件的转码操作,如何高效地完成批量转码呢?现在一起来看看云炫AI智剪如何智能转码&#…...
node.js获取unsplash图片
1. 在Unsplash的开发者页面注册并创建一个应用程序,以便获取一个API访问密钥(即Access Key)。 2. 安装axios: npm install axios3. 使用获取到的API密钥进行请求。 示例代码如下: const axios require(axios);con…...
Git远程库操作(GitHub)
GitHub 网址:https://github.com/ 创建远程仓库 远程仓库操作 命令名称作用git remote -v查看当前所有远程地址别名git remote add 别名 远程地址起别名git push 别名 分支推送本地分支上的内容到远程仓库git clone 远程地址将远程仓库的内容克隆到本地git pull 别…...
java计算下一个整10分钟时间点
最近工作上遇到需要固定在整10分钟一个周期调度某个任务,所以需要这样一个功能,记录下 package org.example;import com.google.gson.Gson; import org.apache.commons.lang3.time.DateUtils;import java.io.InputStream; import java.util.Calendar; i…...
力扣刷题篇之排序算法
系列文章目录 前言 本系列是个人力扣刷题汇总,本文是排序算法。刷题顺序按照[力扣刷题攻略] Re:从零开始的力扣刷题生活 - 力扣(LeetCode) 这个之前写的左神的课程笔记里也有: 左程云算法与数据结构代码汇总之排序&am…...
一键填充字幕——Arctime pro
之前的博客中,我们聊到了PR这款专业的视频制作软件,但是pr有许多的功能需要搭配使用,相信不少小伙伴在剪辑视频时会发现一个致命的问题,就是字幕编写。伴随着人们对字幕需求的逐渐增加,这款软件便应运而生~ 相信应该有…...
【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
【力扣数据库知识手册笔记】索引
索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...
8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
ffmpeg(四):滤镜命令
FFmpeg 的滤镜命令是用于音视频处理中的强大工具,可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下: ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜: ffmpeg…...
学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
Springboot社区养老保险系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,社区养老保险系统小程序被用户普遍使用,为方…...
