当前位置: 首页 > news >正文

python-opencv划痕检测-续

python-opencv划痕检测-续

这次划痕检测,是上一次划痕检测的续集。

处理的图像如下:
在这里插入图片描述

这次划痕检测,我们经过如下几步:
第一步:读取灰度图像
第二步:进行均值滤波
第三步:进行图像差分
第四步:阈值分割
第五步:轮廓检测
第六步:绘制轮廓,并将过滤面积较小的轮廓,且进行轮廓填充

代码如下:

import cv2
import copy
import math
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
import ospath=r'sta.bmp'img=cv2.imread(path)def histogram_equalization(image):gray = imageequalized = cv2.equalizeHist(gray)return equalized# 图像去噪 - 高斯滤波
def gaussian_filtering(image):blurred = cv2.GaussianBlur(image, (3, 3), 0)return blurred#img=gaussian_filtering(img)#img = histogram_equalization(img)
img_gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)def cv_show(name,img):cv2.imshow(name,img)#cv2.waitKey(0),接收0,表示窗口暂停cv2.waitKey(0)#销毁所有窗口cv2.destroyAllWindows()img_mean_3 = cv2.blur(img_gray, (10, 10))#图像差分
img_diffence=cv2.subtract(img_mean_3,img_gray)img_diffence1=img_mean_3-img_grayplt.subplot(131)
plt.imshow(img_diffence,'gray')
plt.title('img_diffence')#阈值分割_,img_binary=cv2.threshold(img_diffence,5,255,cv2.THRESH_BINARY_INV)
plt.subplot(132)
plt.imshow(img_binary,'gray')
plt.title('img_binary')plt.show()
#cv_show('imggrayimg=img_binarycout,hi=cv2.findContours(grayimg,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)#hierarchy 轮廓层级关系
result=np.zeros(img.shape,np.uint8)#绘制轮廓边框
for  i in range(len(cout)):moms=cv2.moments(cout[i])#计算轮廓的矩area=moms['m00']#面积if area>50 and area<1000:cv2.drawContours(result,cout,i,(0,0,255),thickness=cv2.FILLED,hierarchy=hi,maxLevel=0)cv_show('result',result)os.system("pause")

结果如下:
在这里插入图片描述
在这里插入图片描述

相关文章:

python-opencv划痕检测-续

python-opencv划痕检测-续 这次划痕检测&#xff0c;是上一次划痕检测的续集。 处理的图像如下&#xff1a; 这次划痕检测&#xff0c;我们经过如下几步: 第一步&#xff1a;读取灰度图像 第二步&#xff1a;进行均值滤波 第三步&#xff1a;进行图像差分 第四步&#xff1…...

c++[string实现、反思]

我的码云 我的string码云 分析总结 1.项目结构 所有的类和函数需要在namespace中实现&#xff0c;要和string高度对应 private:char* _str;//字符串size_t _size;//有效长度size_t _capacity;//总空间&#xff0c;包括\0const static size_t npos-1;2.定义变量 <1> 所…...

c++版本opencv计算灰度图像的轮廓点

代码 #include<iostream> #include<opencv.hpp>int main() {std::string imgPath("D:\\prostate_run\\result_US_20230804_141531\\mask\\us\\104.bmp");cv::Mat imgGray cv::imread(imgPath, 0);cv::Mat kernel cv::getStructuringElement(cv::MORPH…...

【05】ES6:函数的扩展

一、函数参数的默认值 ES6 允许为函数的参数设置默认值&#xff0c;即直接写在参数定义的后面。 1、基本用法 默认值的生效条件 不传参数&#xff0c;或者明确的传递 undefined 作为参数&#xff0c;只有这两种情况下&#xff0c;默认值才会生效。 注意&#xff1a;null 就…...

Ubuntu20.04安装搜狗输入法

1、安装包下载 搜狗输入法linux-首页搜狗输入法for linux—支持全拼、简拼、模糊音、云输入、皮肤、中英混输https://shurufa.sogou.com/linux点击立即下载&#xff0c;根据自己的硬件选择deb安装包。 2、输入法安装 当第一步完成以后&#xff0c;页面会自动跳转至搜狗的安装…...

linux的基础命令

文章目录 linux的基础命令一、linux的目录结构&#xff08;一&#xff09;Linux路径的描述方式 二、Linux命令入门&#xff08;一&#xff09;Linux命令基础格式 三、ls命令&#xff08;一&#xff09;HOME目录和工作目录&#xff08;二&#xff09;ls命令的参数1.ls命令的-a选…...

linux查询某个进程使用的内存量

linux查询某个进程使用的内存量 查进程用的内存&#xff0c;查看进程占用的内存量&#xff0c;centos查询内存使用 查某个进程id使用的内存量 ps -p 24450 -o rss | awk {print int($1/1024)"MB"} 该命令的含义是&#xff1a; ps -p 24450: 查找进程ID为24450的进…...

list的总结

目录 1.什么是list 1.1list 的优势和劣势 优势&#xff1a; 劣势&#xff1a; 2.构造函数 2.1 default (1) 2.2 fill (2) 2.3 range (3) 2.4 copy (4) 3.list iterator的使用 3.1. begin() 3.2. end() 3.3迭代器遍历 4. list容量函数 4.1. empty() 4.2. siz…...

c语言数字转圈

数字转圈 题干输入整数 N&#xff08;1≤N≤9&#xff09;&#xff0c;输出如下 N 阶方阵。 若输入5显示如下方阵&#xff1a; * 1** 2** 3** 4** 5* *16**17**18**19** 6* *15**24**25**20** 7* *14**23**22**21** 8* *13**12**11**10** 9*输入样例3输出样例* 1*…...

Apache Superset数据分析平台如何实现公网实时远程访问数据【内网穿透】

文章目录 前言1. 使用Docker部署Apache Superset1.1 第一步安装docker 、docker compose1.2 克隆superset代码到本地并使用docker compose启动 2. 安装cpolar内网穿透&#xff0c;实现公网访问3. 设置固定连接公网地址 前言 Superset是一款由中国知名科技公司开源的“现代化的…...

HarmonyOS应用开发实战—登录页面【ArkTS】

文章目录 本页面实战效果预览图一.HarmonyOS应用开发1.1HarmonyOS 详解1.2 ArkTS详解二.HarmonyOS应用开发实战—登录页面【ArkTS】2.1 ArkTS页面源码2.2 代码解析2.3 心得本页面实战效果预览图 一.HarmonyOS应用开发 1.1HarmonyOS 详解 HarmonyOS(鸿蒙操作系统)是华为公司…...

@RequestMapping

目录 作用&#xff1a; 位置&#xff1a; 属性 1.value 2.method 3.params 4.header 作用&#xff1a; 该注解是一个用来处理请求地址映射的注解。 位置&#xff1a; 可用于映射一个请求或一个方法&#xff0c;可以用在类或方法上。 用于方法上&#xff0c;表示在类的…...

操作系统 应用题 例题+参考答案(考研真题)

1.&#xff08;考研真题&#xff09;一个多道批处理系统中仅有P1和P2两个作业&#xff0c;P2比P1晚5ms到达&#xff0c;它们的计算和I/O操作顺序如下。 P1&#xff1a;计算60ms&#xff0c;I/O 80ms&#xff0c;计算20ms。 P2&#xff1a;计算120ms&#xff0c;I/O 40ms&…...

免费获取GPT-4的五种工具

不可否认&#xff0c;由OpenAI带来的GPT-4已是全球最受欢迎的、功能最强大的大语言模型&#xff08;LLM&#xff09;之一。大多数人都需要使用ChatGPT Plus的订阅服务去访问GPT-4。为此&#xff0c;他们通常需要每月支付20美元。那么问题来了&#xff0c;如果您不想每月有这笔支…...

XTU OJ 1146 矩阵乘法学习笔记

原题 题目描述 给你两个矩阵A(n*k),B(k*m),请求A*B。 输入 第一行是一个整数K&#xff0c;表示样例的个数。 每个样例包含两个矩阵A和B。 每个矩阵的第一行是两个整数n,m,(1≤n,m≤10)表示矩阵的行和列 以后的n行&#xff0c;每行m个整数&#xff0c;每个整数的绝对值不超过…...

基于官方YOLOv4开发构建目标检测模型超详细实战教程【以自建缺陷检测数据集为例】

本文是关于基于YOLOv4开发构建目标检测模型的超详细实战教程&#xff0c;超详细实战教程相关的博文在前文有相应的系列&#xff0c;感兴趣的话可以自行移步阅读即可&#xff1a;《基于yolov7开发实践实例分割模型超详细教程》 《YOLOv7基于自己的数据集从零构建模型完整训练、…...

1、Docker概述与安装

相关资源网站&#xff1a; ● docker官网&#xff1a;http://www.docker.com ● Docker Hub仓库官网: https://hub.docker.com/ 注意&#xff0c;如果只是想看Docker的安装&#xff0c;可以直接往下拉跳转到Docker架构与安装章节下的Docker具体安装步骤&#xff0c;一步步带你安…...

论文笔记——FasterNet

为了设计快速神经网络,许多工作都集中在减少浮点运算(FLOPs)的数量上。然而,作者观察到FLOPs的这种减少不一定会带来延迟的类似程度的减少。这主要源于每秒低浮点运算(FLOPS)效率低下。 为了实现更快的网络,作者重新回顾了FLOPs的运算符,并证明了如此低的FLOPS主要是由…...

计算机组成原理-固态硬盘SSD

文章目录 总览机械硬盘vs固态硬盘固态硬盘的结构固态硬盘与机械硬盘相比的特点磨损均衡技术例题 总览 机械硬盘vs固态硬盘 固态硬盘采用闪存技术&#xff0c;是电可擦除ROM 下图右边黑色的块块就是一块一块的闪存芯片 固态硬盘的结构 块大小16KB~512KB 页大小512B~4KB 对固…...

Electron+VUE3开发简版的编辑器【文件预览】

简版编辑器的功能主要是: 打开对话框,选择文件后台读取文件文件前端展示文件内容。主要技术栈是VUE3、Electron和Nodejs,VUE3做页面交互,Electron提供一个可执行Nodejs的环境以及支撑整个应用的环境,nodeJS负责读取文件内容。 环境配置、安装依赖这些步骤就不再叙述了。 …...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

剑指offer20_链表中环的入口节点

链表中环的入口节点 给定一个链表&#xff0c;若其中包含环&#xff0c;则输出环的入口节点。 若其中不包含环&#xff0c;则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 &#x1f4dd; 在上一篇文章中&#xff0c;我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源&#xff0c;方便后续将资源打包到一个可执行文件中。 2.embed介绍 &#x1f3af; Go 1.16 引入了革命性的 embed 包&#xff0c;彻底改变了静态资源管理的…...

AspectJ 在 Android 中的完整使用指南

一、环境配置&#xff08;Gradle 7.0 适配&#xff09; 1. 项目级 build.gradle // 注意&#xff1a;沪江插件已停更&#xff0c;推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南&#xff1a;从入门到实战 一、Grunt 是什么&#xff1f; Grunt是一个基于 Node.js 的前端自动化任务运行器&#xff0c;主要用于自动化执行项目开发中重复性高的任务&#xff0c;例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...