当前位置: 首页 > news >正文

Maven聚合项目发布至私服指定模块

无论是从事框架开发工作还是公共服务模块开发,为了解决通用性问题,常常需要发布一些依赖组件至maven私服。然而通常我们得maven工程都是由多个模块组成得聚合工程(一个父工程下有多个模块)。

这个时候可能会面临两个窘境:

1.当一个个模块分别执行deploy,一方面比较费时费力,另一方面有可能会漏掉父工程得发布导致应用方构建时报无法找到对应父工程依赖得异常。

2.当直接从父工程处执行deploy,则导致所有模块被发布至私服。轻则浪费空间,重则有泄密风险。

解决方案

在无需发布到maven仓库的模块对应pom.xml文件里加上一个配置属性即可:

<properties><maven.deploy.skip>true</maven.deploy.skip>
</properties>

相关文章:

Maven聚合项目发布至私服指定模块

无论是从事框架开发工作还是公共服务模块开发&#xff0c;为了解决通用性问题&#xff0c;常常需要发布一些依赖组件至maven私服。然而通常我们得maven工程都是由多个模块组成得聚合工程&#xff08;一个父工程下有多个模块&#xff09;。 这个时候可能会面临两个窘境&#xf…...

SpringCloud 微服务全栈体系(十六)

第十一章 分布式搜索引擎 elasticsearch 六、DSL 查询文档 elasticsearch 的查询依然是基于 JSON 风格的 DSL 来实现的。 1. DSL 查询分类 Elasticsearch 提供了基于 JSON 的 DSL&#xff08;Domain Specific Language&#xff09;来定义查询。常见的查询类型包括&#xff1…...

「快学Docker」监控和日志记录容器的健康和性能

「快学Docker」监控和日志记录容器的健康和性能 1. 容器健康状态监控2. 性能监控3. 日志记录几种采集架构图 4. 监控工具和平台cAdvisor&#xff08;Container Advisor&#xff09;PrometheusGrafana 5. 自动化运维 1. 容器健康状态监控 方法1&#xff1a;需要实时监测容器的运…...

midjourney过时了?如何使用基于LCM的绘图技术画出你心中的画卷。

生成 AI 艺术在近年来迅速发展&#xff0c;吸引了数百万用户。然而&#xff0c;传统的生成 AI 艺术需要等待几秒钟或几分钟才能生成&#xff0c;这对于快节奏的现代社会来说并不理想。 近日&#xff0c;中国清华大学和 AI 代码共享平台 HuggingFace 联合开发了一项新的机器学习…...

【代码随想录】算法训练计划28

回溯 1、子集 题目&#xff1a; 给你一个整数数组 nums &#xff0c;数组中的元素 互不相同 。返回该数组所有可能的子集&#xff08;幂集&#xff09;。 解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。 输入&#xff1a;nums [1,2,3] 输出&#xff1a;[[],[1],[2…...

量化交易:筹码理论的探索-筹码分布计算的实现

前言 很多朋友习惯了同花顺、大智慧等看盘软件&#xff0c;经常问到筹码分布如何计算。 说起来筹码分布的理论在庄股时代堪称是一个划时代产品&#xff0c;虽然历经level2数据、资金流统计、拆单算法与反拆单算法等新型技术的变革&#xff0c;庄股时代也逐渐淡出市场&#xf…...

常用Redis的键命令参考

一、DEL DEL key [key …] 删除给定的一个或多个 key 。 不存在的 key 会被忽略。 #删除单个键127.0.0.1:6379> set name zhangsan OK 127.0.0.1:6379> del name (integer) 1# 删除一个不存在的 key&#xff0c; 失败&#xff0c;没有 key 被删除127.0.0.1:6379> E…...

Lombok @With 的纯弊端及如何避免

由于是第一篇写关于 Lombok 的日志&#xff0c;所以有些不情愿去开门见山直接触及 With, 而要先提一提本人对 Lombok 的接触过程。 两三年之前写 Java 代码一直都是全手工打造。一个数据类&#xff0c;所有必须的 setter/getter, toString, hashcode() 等全体现在源代码中&…...

C语言每日一题(38)无重复字符的最长字串

力扣 3 无重复字符的最长字串 题目描述 给定一个字符串 s &#xff0c;请你找出其中不含有重复字符的 最长子串 的长度。 示例 1: 输入: s "abcabcbb" 输出: 3 解释: 因为无重复字符的最长子串是 "abc"&#xff0c;所以其长度为 3。示例 2: 输入: s…...

Azure Machine Learning - Azure可视化图像分类操作实战

目录 一、数据准备二、创建自定义视觉资源三、创建新项目四、选择训练图像五、上传和标记图像六、训练分类器七、评估分类器概率阈值 八、管理训练迭代 在本文中&#xff0c;你将了解如何使用Azure可视化页面创建图像分类模型。 生成模型后&#xff0c;可以使用新图像测试该模型…...

PaddleOCR学习笔记

Paddle 功能特性 PP-OCR系列模型列表 https://github.com/PaddlePaddle/PaddleOCR#%EF%B8%8F-pp-ocr%E7%B3%BB%E5%88%97%E6%A8%A1%E5%9E%8B%E5%88%97%E8%A1%A8%E6%9B%B4%E6%96%B0%E4%B8%AD PP-OCR系列模型列表&#xff08;V4&#xff0c;2023年8月1日更新&#xff09; 配置文…...

安卓用SQLite数据库存储数据

什么是SQLite&#xff1f; SQLite是安卓中的轻量级内置数据库&#xff0c;不需要设置用户名和密码就可以使用。资源占用较少&#xff0c;运算速度也比较快。 SQLite支持&#xff1a;null&#xff08;空&#xff09;、integer&#xff08;整形&#xff09;、real&#xff08;小…...

MMFN-AL

MMFN means ‘multi-modal fusion network’ 辅助信息 作者未提供代码...

7、独立按键控制LED状态

按键的抖动 对于机械开关&#xff0c;当机械触点断开、闭合时&#xff0c;由于机械触点的弹性作用&#xff0c;一个开关在闭合时不回马上稳定地接通&#xff0c;在断开时也不会一下子断开&#xff0c;所以在开关闭合及断开的瞬间会伴随一连串的抖动 #include <REGX52.H…...

香蕉派BPI-M4 Zero单板计算机采用全志H618,板载2GRAM内存

Banana Pi BPI-M4 Zero 香蕉派 BPI-M4 Zero是BPI-M2 Zero的最新升级版本。它在性能上有很大的提高。主控芯片升级为全志科技H618 四核A53, CPU主频提升25%。内存升级为2G LPDDR4&#xff0c;板载8G eMMC存储。它支持5G WiFi 和蓝牙, USB接口也升级为type-C。 它具有与树莓派 …...

微信小程序内部跳到外部小程序

要在微信小程序中跳转到外部小程序&#xff0c;可以使用wx.navigateToMiniProgram函数。以下是一个示例&#xff1a; wx.navigateToMiniProgram({appId: 外部小程序的appId,path: 外部小程序的路径,extraData: {id: xxx},success(res) {// 跳转成功} })在这个示例中&#xff0…...

Spring Boot中设置文件上传大小限制

在Spring Boot中&#xff0c;可以通过以下步骤来设置上传文件的大小&#xff1a; 在application.properties或application.yml文件中&#xff0c;添加以下配置&#xff1a; 对于application.properties&#xff1a; spring.servlet.multipart.max-file-size128MB spring.se…...

8、独立按键控制LED显示二进制

独立按键控制LED显示二进制 #include <REGX52.H>void Delay(unsigned int xms) //12.000MHz {unsigned char i, j;while(xms--){i 2;j 239;do{while (--j);} while (--i);} }void main() {//数据类型刚好是8位与51单片机IO口寄存器位数相同&#xff08;默认高电平&am…...

命名空间、字符串、布尔类型、nullptr、类型推导

面向过程语言&#xff1a;C ——> 重视求解过程 面向对象语言&#xff1a;C ——> 重视求解的方法 面向对象的三大特征&#xff1a;封装、继承和多态 C 和 C 在语法上的区别 1、命名空间&#xff08;用于解决命名冲突问题&#xff09; 2、函数重载和运算符重载&#xf…...

力控软件与多台PLC之间ModbusTCP/IP无线通信

Modbus TCP/IP 是对成熟的 Modbus 协议的改编&#xff0c; 因其开放性、简单性和广泛接受性而在工业自动化系统中发挥着举足轻重的作用。它作为连接各种工业设备的通用通信协议&#xff0c;包括可编程逻辑控制器 (PLC)、远程终端单元 (RTU) 和传感器。它提供标准化的 TCP 接口&…...

ubuntu搭建nfs服务centos挂载访问

在Ubuntu上设置NFS服务器 在Ubuntu上&#xff0c;你可以使用apt包管理器来安装NFS服务器。打开终端并运行&#xff1a; sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享&#xff0c;例如/shared&#xff1a; sudo mkdir /shared sud…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序&#xff0c;以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务&#xff0c;提供稳定高效的数据处理与业务逻辑支持&#xff1b;利用 uniapp 实现跨平台前…...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开&#xff0c;首…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅&#xff08;Pub/Sub&#xff09;模式与专业的 MQ&#xff08;Message Queue&#xff09;如 Kafka、RabbitMQ 进行比较&#xff0c;核心的权衡点在于&#xff1a;简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...